| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1fermltl | Structured version Visualization version GIF version | ||
| Description: Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| ply1fermltl.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑃) |
| ply1fermltl.w | ⊢ 𝑊 = (Poly1‘𝑍) |
| ply1fermltl.x | ⊢ 𝑋 = (var1‘𝑍) |
| ply1fermltl.l | ⊢ + = (+g‘𝑊) |
| ply1fermltl.n | ⊢ 𝑁 = (mulGrp‘𝑊) |
| ply1fermltl.t | ⊢ ↑ = (.g‘𝑁) |
| ply1fermltl.c | ⊢ 𝐶 = (algSc‘𝑊) |
| ply1fermltl.a | ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) |
| ply1fermltl.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| ply1fermltl.1 | ⊢ (𝜑 → 𝐸 ∈ ℤ) |
| Ref | Expression |
|---|---|
| ply1fermltl | ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1fermltl.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑍) | |
| 2 | ply1fermltl.x | . . 3 ⊢ 𝑋 = (var1‘𝑍) | |
| 3 | ply1fermltl.l | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | ply1fermltl.n | . . 3 ⊢ 𝑁 = (mulGrp‘𝑊) | |
| 5 | ply1fermltl.t | . . 3 ⊢ ↑ = (.g‘𝑁) | |
| 6 | ply1fermltl.c | . . 3 ⊢ 𝐶 = (algSc‘𝑊) | |
| 7 | ply1fermltl.a | . . 3 ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) | |
| 8 | eqid 2731 | . . 3 ⊢ (chr‘𝑍) = (chr‘𝑍) | |
| 9 | ply1fermltl.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 10 | prmnn 16585 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 11 | nnnn0 12388 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 12 | ply1fermltl.z | . . . . 5 ⊢ 𝑍 = (ℤ/nℤ‘𝑃) | |
| 13 | 12 | zncrng 21481 | . . . 4 ⊢ (𝑃 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 14 | 9, 10, 11, 13 | 4syl 19 | . . 3 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 15 | 12 | znchr 21499 | . . . . 5 ⊢ (𝑃 ∈ ℕ0 → (chr‘𝑍) = 𝑃) |
| 16 | 9, 10, 11, 15 | 4syl 19 | . . . 4 ⊢ (𝜑 → (chr‘𝑍) = 𝑃) |
| 17 | 16, 9 | eqeltrd 2831 | . . 3 ⊢ (𝜑 → (chr‘𝑍) ∈ ℙ) |
| 18 | ply1fermltl.1 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℤ) | |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18 | ply1fermltlchr 22227 | . 2 ⊢ (𝜑 → ((chr‘𝑍) ↑ (𝑋 + 𝐴)) = (((chr‘𝑍) ↑ 𝑋) + 𝐴)) |
| 20 | 16 | oveq1d 7361 | . 2 ⊢ (𝜑 → ((chr‘𝑍) ↑ (𝑋 + 𝐴)) = (𝑃 ↑ (𝑋 + 𝐴))) |
| 21 | 16 | oveq1d 7361 | . . 3 ⊢ (𝜑 → ((chr‘𝑍) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
| 22 | 21 | oveq1d 7361 | . 2 ⊢ (𝜑 → (((chr‘𝑍) ↑ 𝑋) + 𝐴) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| 23 | 19, 20, 22 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 ℙcprime 16582 +gcplusg 17161 .gcmg 18980 mulGrpcmgp 20058 CRingccrg 20152 ℤRHomczrh 21436 chrcchr 21438 ℤ/nℤczn 21439 algSccascl 21789 var1cv1 22088 Poly1cpl1 22089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-prm 16583 df-phi 16677 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-imas 17412 df-qus 17413 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19125 df-cntz 19229 df-od 19440 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-sra 21107 df-rgmod 21108 df-lidl 21145 df-rsp 21146 df-2idl 21187 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-chr 21442 df-zn 21443 df-assa 21790 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |