![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1fermltl | Structured version Visualization version GIF version |
Description: Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
Ref | Expression |
---|---|
ply1fermltl.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑃) |
ply1fermltl.w | ⊢ 𝑊 = (Poly1‘𝑍) |
ply1fermltl.x | ⊢ 𝑋 = (var1‘𝑍) |
ply1fermltl.l | ⊢ + = (+g‘𝑊) |
ply1fermltl.n | ⊢ 𝑁 = (mulGrp‘𝑊) |
ply1fermltl.t | ⊢ ↑ = (.g‘𝑁) |
ply1fermltl.c | ⊢ 𝐶 = (algSc‘𝑊) |
ply1fermltl.a | ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) |
ply1fermltl.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
ply1fermltl.1 | ⊢ (𝜑 → 𝐸 ∈ ℤ) |
Ref | Expression |
---|---|
ply1fermltl | ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1fermltl.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑍) | |
2 | ply1fermltl.x | . . 3 ⊢ 𝑋 = (var1‘𝑍) | |
3 | ply1fermltl.l | . . 3 ⊢ + = (+g‘𝑊) | |
4 | ply1fermltl.n | . . 3 ⊢ 𝑁 = (mulGrp‘𝑊) | |
5 | ply1fermltl.t | . . 3 ⊢ ↑ = (.g‘𝑁) | |
6 | ply1fermltl.c | . . 3 ⊢ 𝐶 = (algSc‘𝑊) | |
7 | ply1fermltl.a | . . 3 ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) | |
8 | eqid 2728 | . . 3 ⊢ (chr‘𝑍) = (chr‘𝑍) | |
9 | ply1fermltl.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
10 | prmnn 16645 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
11 | nnnn0 12510 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
12 | ply1fermltl.z | . . . . 5 ⊢ 𝑍 = (ℤ/nℤ‘𝑃) | |
13 | 12 | zncrng 21478 | . . . 4 ⊢ (𝑃 ∈ ℕ0 → 𝑍 ∈ CRing) |
14 | 9, 10, 11, 13 | 4syl 19 | . . 3 ⊢ (𝜑 → 𝑍 ∈ CRing) |
15 | 12 | znchr 21496 | . . . . 5 ⊢ (𝑃 ∈ ℕ0 → (chr‘𝑍) = 𝑃) |
16 | 9, 10, 11, 15 | 4syl 19 | . . . 4 ⊢ (𝜑 → (chr‘𝑍) = 𝑃) |
17 | 16, 9 | eqeltrd 2829 | . . 3 ⊢ (𝜑 → (chr‘𝑍) ∈ ℙ) |
18 | ply1fermltl.1 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℤ) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18 | ply1fermltlchr 22231 | . 2 ⊢ (𝜑 → ((chr‘𝑍) ↑ (𝑋 + 𝐴)) = (((chr‘𝑍) ↑ 𝑋) + 𝐴)) |
20 | 16 | oveq1d 7435 | . 2 ⊢ (𝜑 → ((chr‘𝑍) ↑ (𝑋 + 𝐴)) = (𝑃 ↑ (𝑋 + 𝐴))) |
21 | 16 | oveq1d 7435 | . . 3 ⊢ (𝜑 → ((chr‘𝑍) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
22 | 21 | oveq1d 7435 | . 2 ⊢ (𝜑 → (((chr‘𝑍) ↑ 𝑋) + 𝐴) = ((𝑃 ↑ 𝑋) + 𝐴)) |
23 | 19, 20, 22 | 3eqtr3d 2776 | 1 ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 ℕcn 12243 ℕ0cn0 12503 ℤcz 12589 ℙcprime 16642 +gcplusg 17233 .gcmg 19023 mulGrpcmgp 20074 CRingccrg 20174 ℤRHomczrh 21425 chrcchr 21427 ℤ/nℤczn 21428 algSccascl 21786 var1cv1 22095 Poly1cpl1 22096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 ax-mulf 11219 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-ofr 7686 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-ec 8727 df-qs 8731 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-sup 9466 df-inf 9467 df-oi 9534 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-xnn0 12576 df-z 12590 df-dec 12709 df-uz 12854 df-rp 13008 df-fz 13518 df-fzo 13661 df-fl 13790 df-mod 13868 df-seq 14000 df-exp 14060 df-fac 14266 df-bc 14295 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-dvds 16232 df-gcd 16470 df-prm 16643 df-phi 16735 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-0g 17423 df-gsum 17424 df-prds 17429 df-pws 17431 df-imas 17490 df-qus 17491 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-mhm 18740 df-submnd 18741 df-grp 18893 df-minusg 18894 df-sbg 18895 df-mulg 19024 df-subg 19078 df-nsg 19079 df-eqg 19080 df-ghm 19168 df-cntz 19268 df-od 19483 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-srg 20127 df-ring 20175 df-cring 20176 df-oppr 20273 df-dvdsr 20296 df-unit 20297 df-invr 20327 df-dvr 20340 df-rhm 20411 df-subrng 20483 df-subrg 20508 df-drng 20626 df-lmod 20745 df-lss 20816 df-lsp 20856 df-sra 21058 df-rgmod 21059 df-lidl 21104 df-rsp 21105 df-2idl 21144 df-cnfld 21280 df-zring 21373 df-zrh 21429 df-chr 21431 df-zn 21432 df-assa 21787 df-ascl 21789 df-psr 21842 df-mvr 21843 df-mpl 21844 df-opsr 21846 df-psr1 22099 df-vr1 22100 df-ply1 22101 df-coe1 22102 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |