| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1fermltl | Structured version Visualization version GIF version | ||
| Description: Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| ply1fermltl.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑃) |
| ply1fermltl.w | ⊢ 𝑊 = (Poly1‘𝑍) |
| ply1fermltl.x | ⊢ 𝑋 = (var1‘𝑍) |
| ply1fermltl.l | ⊢ + = (+g‘𝑊) |
| ply1fermltl.n | ⊢ 𝑁 = (mulGrp‘𝑊) |
| ply1fermltl.t | ⊢ ↑ = (.g‘𝑁) |
| ply1fermltl.c | ⊢ 𝐶 = (algSc‘𝑊) |
| ply1fermltl.a | ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) |
| ply1fermltl.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| ply1fermltl.1 | ⊢ (𝜑 → 𝐸 ∈ ℤ) |
| Ref | Expression |
|---|---|
| ply1fermltl | ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1fermltl.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑍) | |
| 2 | ply1fermltl.x | . . 3 ⊢ 𝑋 = (var1‘𝑍) | |
| 3 | ply1fermltl.l | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | ply1fermltl.n | . . 3 ⊢ 𝑁 = (mulGrp‘𝑊) | |
| 5 | ply1fermltl.t | . . 3 ⊢ ↑ = (.g‘𝑁) | |
| 6 | ply1fermltl.c | . . 3 ⊢ 𝐶 = (algSc‘𝑊) | |
| 7 | ply1fermltl.a | . . 3 ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) | |
| 8 | eqid 2729 | . . 3 ⊢ (chr‘𝑍) = (chr‘𝑍) | |
| 9 | ply1fermltl.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 10 | prmnn 16585 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 11 | nnnn0 12391 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 12 | ply1fermltl.z | . . . . 5 ⊢ 𝑍 = (ℤ/nℤ‘𝑃) | |
| 13 | 12 | zncrng 21451 | . . . 4 ⊢ (𝑃 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 14 | 9, 10, 11, 13 | 4syl 19 | . . 3 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 15 | 12 | znchr 21469 | . . . . 5 ⊢ (𝑃 ∈ ℕ0 → (chr‘𝑍) = 𝑃) |
| 16 | 9, 10, 11, 15 | 4syl 19 | . . . 4 ⊢ (𝜑 → (chr‘𝑍) = 𝑃) |
| 17 | 16, 9 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → (chr‘𝑍) ∈ ℙ) |
| 18 | ply1fermltl.1 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℤ) | |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18 | ply1fermltlchr 22197 | . 2 ⊢ (𝜑 → ((chr‘𝑍) ↑ (𝑋 + 𝐴)) = (((chr‘𝑍) ↑ 𝑋) + 𝐴)) |
| 20 | 16 | oveq1d 7364 | . 2 ⊢ (𝜑 → ((chr‘𝑍) ↑ (𝑋 + 𝐴)) = (𝑃 ↑ (𝑋 + 𝐴))) |
| 21 | 16 | oveq1d 7364 | . . 3 ⊢ (𝜑 → ((chr‘𝑍) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
| 22 | 21 | oveq1d 7364 | . 2 ⊢ (𝜑 → (((chr‘𝑍) ↑ 𝑋) + 𝐴) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| 23 | 19, 20, 22 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ℕcn 12128 ℕ0cn0 12384 ℤcz 12471 ℙcprime 16582 +gcplusg 17161 .gcmg 18946 mulGrpcmgp 20025 CRingccrg 20119 ℤRHomczrh 21406 chrcchr 21408 ℤ/nℤczn 21409 algSccascl 21759 var1cv1 22058 Poly1cpl1 22059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-prm 16583 df-phi 16677 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-imas 17412 df-qus 17413 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-nsg 19003 df-eqg 19004 df-ghm 19092 df-cntz 19196 df-od 19407 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-rsp 21116 df-2idl 21157 df-cnfld 21262 df-zring 21354 df-zrh 21410 df-chr 21412 df-zn 21413 df-assa 21760 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-vr1 22063 df-ply1 22064 df-coe1 22065 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |