Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1fermltl Structured version   Visualization version   GIF version

Theorem ply1fermltl 33262
Description: Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypotheses
Ref Expression
ply1fermltl.z 𝑍 = (ℤ/nℤ‘𝑃)
ply1fermltl.w 𝑊 = (Poly1𝑍)
ply1fermltl.x 𝑋 = (var1𝑍)
ply1fermltl.l + = (+g𝑊)
ply1fermltl.n 𝑁 = (mulGrp‘𝑊)
ply1fermltl.t = (.g𝑁)
ply1fermltl.c 𝐶 = (algSc‘𝑊)
ply1fermltl.a 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸))
ply1fermltl.p (𝜑𝑃 ∈ ℙ)
ply1fermltl.1 (𝜑𝐸 ∈ ℤ)
Assertion
Ref Expression
ply1fermltl (𝜑 → (𝑃 (𝑋 + 𝐴)) = ((𝑃 𝑋) + 𝐴))

Proof of Theorem ply1fermltl
StepHypRef Expression
1 ply1fermltl.w . . 3 𝑊 = (Poly1𝑍)
2 ply1fermltl.x . . 3 𝑋 = (var1𝑍)
3 ply1fermltl.l . . 3 + = (+g𝑊)
4 ply1fermltl.n . . 3 𝑁 = (mulGrp‘𝑊)
5 ply1fermltl.t . . 3 = (.g𝑁)
6 ply1fermltl.c . . 3 𝐶 = (algSc‘𝑊)
7 ply1fermltl.a . . 3 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸))
8 eqid 2728 . . 3 (chr‘𝑍) = (chr‘𝑍)
9 ply1fermltl.p . . . 4 (𝜑𝑃 ∈ ℙ)
10 prmnn 16645 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
11 nnnn0 12510 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
12 ply1fermltl.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑃)
1312zncrng 21478 . . . 4 (𝑃 ∈ ℕ0𝑍 ∈ CRing)
149, 10, 11, 134syl 19 . . 3 (𝜑𝑍 ∈ CRing)
1512znchr 21496 . . . . 5 (𝑃 ∈ ℕ0 → (chr‘𝑍) = 𝑃)
169, 10, 11, 154syl 19 . . . 4 (𝜑 → (chr‘𝑍) = 𝑃)
1716, 9eqeltrd 2829 . . 3 (𝜑 → (chr‘𝑍) ∈ ℙ)
18 ply1fermltl.1 . . 3 (𝜑𝐸 ∈ ℤ)
191, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18ply1fermltlchr 22231 . 2 (𝜑 → ((chr‘𝑍) (𝑋 + 𝐴)) = (((chr‘𝑍) 𝑋) + 𝐴))
2016oveq1d 7435 . 2 (𝜑 → ((chr‘𝑍) (𝑋 + 𝐴)) = (𝑃 (𝑋 + 𝐴)))
2116oveq1d 7435 . . 3 (𝜑 → ((chr‘𝑍) 𝑋) = (𝑃 𝑋))
2221oveq1d 7435 . 2 (𝜑 → (((chr‘𝑍) 𝑋) + 𝐴) = ((𝑃 𝑋) + 𝐴))
2319, 20, 223eqtr3d 2776 1 (𝜑 → (𝑃 (𝑋 + 𝐴)) = ((𝑃 𝑋) + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  cn 12243  0cn0 12503  cz 12589  cprime 16642  +gcplusg 17233  .gcmg 19023  mulGrpcmgp 20074  CRingccrg 20174  ℤRHomczrh 21425  chrcchr 21427  ℤ/nczn 21428  algSccascl 21786  var1cv1 22095  Poly1cpl1 22096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217  ax-addf 11218  ax-mulf 11219
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-ofr 7686  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-sup 9466  df-inf 9467  df-oi 9534  df-dju 9925  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-xnn0 12576  df-z 12590  df-dec 12709  df-uz 12854  df-rp 13008  df-fz 13518  df-fzo 13661  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-fac 14266  df-bc 14295  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-dvds 16232  df-gcd 16470  df-prm 16643  df-phi 16735  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-0g 17423  df-gsum 17424  df-prds 17429  df-pws 17431  df-imas 17490  df-qus 17491  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-mhm 18740  df-submnd 18741  df-grp 18893  df-minusg 18894  df-sbg 18895  df-mulg 19024  df-subg 19078  df-nsg 19079  df-eqg 19080  df-ghm 19168  df-cntz 19268  df-od 19483  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-srg 20127  df-ring 20175  df-cring 20176  df-oppr 20273  df-dvdsr 20296  df-unit 20297  df-invr 20327  df-dvr 20340  df-rhm 20411  df-subrng 20483  df-subrg 20508  df-drng 20626  df-lmod 20745  df-lss 20816  df-lsp 20856  df-sra 21058  df-rgmod 21059  df-lidl 21104  df-rsp 21105  df-2idl 21144  df-cnfld 21280  df-zring 21373  df-zrh 21429  df-chr 21431  df-zn 21432  df-assa 21787  df-ascl 21789  df-psr 21842  df-mvr 21843  df-mpl 21844  df-opsr 21846  df-psr1 22099  df-vr1 22100  df-ply1 22101  df-coe1 22102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator