Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1fermltl | Structured version Visualization version GIF version |
Description: Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
Ref | Expression |
---|---|
ply1fermltl.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑃) |
ply1fermltl.w | ⊢ 𝑊 = (Poly1‘𝑍) |
ply1fermltl.x | ⊢ 𝑋 = (var1‘𝑍) |
ply1fermltl.l | ⊢ + = (+g‘𝑊) |
ply1fermltl.n | ⊢ 𝑁 = (mulGrp‘𝑊) |
ply1fermltl.t | ⊢ ↑ = (.g‘𝑁) |
ply1fermltl.c | ⊢ 𝐶 = (algSc‘𝑊) |
ply1fermltl.a | ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) |
ply1fermltl.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
ply1fermltl.1 | ⊢ (𝜑 → 𝐸 ∈ ℤ) |
Ref | Expression |
---|---|
ply1fermltl | ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | ply1fermltl.l | . . 3 ⊢ + = (+g‘𝑊) | |
3 | ply1fermltl.t | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
4 | ply1fermltl.n | . . . . 5 ⊢ 𝑁 = (mulGrp‘𝑊) | |
5 | 4 | fveq2i 6759 | . . . 4 ⊢ (.g‘𝑁) = (.g‘(mulGrp‘𝑊)) |
6 | 3, 5 | eqtri 2766 | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑊)) |
7 | eqid 2738 | . . 3 ⊢ (chr‘𝑊) = (chr‘𝑊) | |
8 | ply1fermltl.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
9 | prmnn 16307 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
10 | nnnn0 12170 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
11 | ply1fermltl.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑃) | |
12 | 11 | zncrng 20664 | . . . . 5 ⊢ (𝑃 ∈ ℕ0 → 𝑍 ∈ CRing) |
13 | 8, 9, 10, 12 | 4syl 19 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ CRing) |
14 | ply1fermltl.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑍) | |
15 | 14 | ply1crng 21279 | . . . 4 ⊢ (𝑍 ∈ CRing → 𝑊 ∈ CRing) |
16 | 13, 15 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ CRing) |
17 | 14 | ply1chr 31571 | . . . . . 6 ⊢ (𝑍 ∈ CRing → (chr‘𝑊) = (chr‘𝑍)) |
18 | 13, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (chr‘𝑊) = (chr‘𝑍)) |
19 | 11 | znchr 20682 | . . . . . 6 ⊢ (𝑃 ∈ ℕ0 → (chr‘𝑍) = 𝑃) |
20 | 8, 9, 10, 19 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (chr‘𝑍) = 𝑃) |
21 | 18, 20 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (chr‘𝑊) = 𝑃) |
22 | 21, 8 | eqeltrd 2839 | . . 3 ⊢ (𝜑 → (chr‘𝑊) ∈ ℙ) |
23 | 13 | crngringd 19711 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ Ring) |
24 | ply1fermltl.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑍) | |
25 | 24, 14, 1 | vr1cl 21298 | . . . 4 ⊢ (𝑍 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
26 | 23, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
27 | ply1fermltl.a | . . . 4 ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) | |
28 | eqid 2738 | . . . . . . . 8 ⊢ (ℤRHom‘𝑍) = (ℤRHom‘𝑍) | |
29 | 28 | zrhrhm 20625 | . . . . . . 7 ⊢ (𝑍 ∈ Ring → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍)) |
30 | zringbas 20588 | . . . . . . . 8 ⊢ ℤ = (Base‘ℤring) | |
31 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
32 | 30, 31 | rhmf 19885 | . . . . . . 7 ⊢ ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍)) |
33 | 23, 29, 32 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍)) |
34 | ply1fermltl.1 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℤ) | |
35 | 33, 34 | ffvelrnd 6944 | . . . . 5 ⊢ (𝜑 → ((ℤRHom‘𝑍)‘𝐸) ∈ (Base‘𝑍)) |
36 | ply1fermltl.c | . . . . . 6 ⊢ 𝐶 = (algSc‘𝑊) | |
37 | 14, 36, 31, 1 | ply1sclcl 21367 | . . . . 5 ⊢ ((𝑍 ∈ Ring ∧ ((ℤRHom‘𝑍)‘𝐸) ∈ (Base‘𝑍)) → (𝐶‘((ℤRHom‘𝑍)‘𝐸)) ∈ (Base‘𝑊)) |
38 | 23, 35, 37 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐶‘((ℤRHom‘𝑍)‘𝐸)) ∈ (Base‘𝑊)) |
39 | 27, 38 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑊)) |
40 | 1, 2, 6, 7, 16, 22, 26, 39 | freshmansdream 31386 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴))) |
41 | 21 | oveq1d 7270 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (𝑃 ↑ (𝑋 + 𝐴))) |
42 | 21 | oveq1d 7270 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
43 | 21 | oveq1d 7270 | . . . 4 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = (𝑃 ↑ 𝐴)) |
44 | 14 | ply1assa 21280 | . . . . . . . . 9 ⊢ (𝑍 ∈ CRing → 𝑊 ∈ AssAlg) |
45 | eqid 2738 | . . . . . . . . . 10 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
46 | 36, 45 | asclrhm 21004 | . . . . . . . . 9 ⊢ (𝑊 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
47 | 13, 44, 46 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
48 | 13 | crnggrpd 19712 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ Grp) |
49 | 14 | ply1sca 21334 | . . . . . . . . . 10 ⊢ (𝑍 ∈ Grp → 𝑍 = (Scalar‘𝑊)) |
50 | 48, 49 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 = (Scalar‘𝑊)) |
51 | 50 | oveq1d 7270 | . . . . . . . 8 ⊢ (𝜑 → (𝑍 RingHom 𝑊) = ((Scalar‘𝑊) RingHom 𝑊)) |
52 | 47, 51 | eleqtrrd 2842 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝑍 RingHom 𝑊)) |
53 | eqid 2738 | . . . . . . . 8 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
54 | 53, 4 | rhmmhm 19881 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑍 RingHom 𝑊) → 𝐶 ∈ ((mulGrp‘𝑍) MndHom 𝑁)) |
55 | 52, 54 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((mulGrp‘𝑍) MndHom 𝑁)) |
56 | 8, 9, 10 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
57 | 53, 31 | mgpbas 19641 | . . . . . . 7 ⊢ (Base‘𝑍) = (Base‘(mulGrp‘𝑍)) |
58 | eqid 2738 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝑍)) = (.g‘(mulGrp‘𝑍)) | |
59 | 57, 58, 3 | mhmmulg 18659 | . . . . . 6 ⊢ ((𝐶 ∈ ((mulGrp‘𝑍) MndHom 𝑁) ∧ 𝑃 ∈ ℕ0 ∧ ((ℤRHom‘𝑍)‘𝐸) ∈ (Base‘𝑍)) → (𝐶‘(𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝑍)‘𝐸)))) |
60 | 55, 56, 35, 59 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝑍)‘𝐸)))) |
61 | 27 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸))) |
62 | 61 | oveq2d 7271 | . . . . 5 ⊢ (𝜑 → (𝑃 ↑ 𝐴) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝑍)‘𝐸)))) |
63 | 60, 62 | eqtr4d 2781 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸))) = (𝑃 ↑ 𝐴)) |
64 | 11, 31, 58 | znfermltl 31464 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ((ℤRHom‘𝑍)‘𝐸) ∈ (Base‘𝑍)) → (𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸)) = ((ℤRHom‘𝑍)‘𝐸)) |
65 | 8, 35, 64 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸)) = ((ℤRHom‘𝑍)‘𝐸)) |
66 | 65 | fveq2d 6760 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸))) = (𝐶‘((ℤRHom‘𝑍)‘𝐸))) |
67 | 66, 27 | eqtr4di 2797 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸))) = 𝐴) |
68 | 43, 63, 67 | 3eqtr2d 2784 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = 𝐴) |
69 | 42, 68 | oveq12d 7273 | . 2 ⊢ (𝜑 → (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
70 | 40, 41, 69 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ℙcprime 16304 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 MndHom cmhm 18343 Grpcgrp 18492 .gcmg 18615 mulGrpcmgp 19635 Ringcrg 19698 CRingccrg 19699 RingHom crh 19871 ℤringzring 20582 ℤRHomczrh 20613 chrcchr 20615 ℤ/nℤczn 20616 AssAlgcasa 20967 algSccascl 20969 var1cv1 21257 Poly1cpl1 21258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 df-phi 16395 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-gsum 17070 df-imas 17136 df-qus 17137 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-nsg 18668 df-eqg 18669 df-ghm 18747 df-cntz 18838 df-od 19051 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-rsp 20352 df-2idl 20416 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-chr 20619 df-zn 20620 df-assa 20970 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-vr1 21262 df-ply1 21263 df-coe1 21264 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |