Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1fermltl | Structured version Visualization version GIF version |
Description: Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
Ref | Expression |
---|---|
ply1fermltl.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑃) |
ply1fermltl.w | ⊢ 𝑊 = (Poly1‘𝑍) |
ply1fermltl.x | ⊢ 𝑋 = (var1‘𝑍) |
ply1fermltl.l | ⊢ + = (+g‘𝑊) |
ply1fermltl.n | ⊢ 𝑁 = (mulGrp‘𝑊) |
ply1fermltl.t | ⊢ ↑ = (.g‘𝑁) |
ply1fermltl.c | ⊢ 𝐶 = (algSc‘𝑊) |
ply1fermltl.a | ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) |
ply1fermltl.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
ply1fermltl.1 | ⊢ (𝜑 → 𝐸 ∈ ℤ) |
Ref | Expression |
---|---|
ply1fermltl | ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | ply1fermltl.l | . . 3 ⊢ + = (+g‘𝑊) | |
3 | ply1fermltl.t | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
4 | ply1fermltl.n | . . . . 5 ⊢ 𝑁 = (mulGrp‘𝑊) | |
5 | 4 | fveq2i 6777 | . . . 4 ⊢ (.g‘𝑁) = (.g‘(mulGrp‘𝑊)) |
6 | 3, 5 | eqtri 2766 | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑊)) |
7 | eqid 2738 | . . 3 ⊢ (chr‘𝑊) = (chr‘𝑊) | |
8 | ply1fermltl.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
9 | prmnn 16379 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
10 | nnnn0 12240 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
11 | ply1fermltl.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑃) | |
12 | 11 | zncrng 20752 | . . . . 5 ⊢ (𝑃 ∈ ℕ0 → 𝑍 ∈ CRing) |
13 | 8, 9, 10, 12 | 4syl 19 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ CRing) |
14 | ply1fermltl.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑍) | |
15 | 14 | ply1crng 21369 | . . . 4 ⊢ (𝑍 ∈ CRing → 𝑊 ∈ CRing) |
16 | 13, 15 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ CRing) |
17 | 14 | ply1chr 31669 | . . . . . 6 ⊢ (𝑍 ∈ CRing → (chr‘𝑊) = (chr‘𝑍)) |
18 | 13, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (chr‘𝑊) = (chr‘𝑍)) |
19 | 11 | znchr 20770 | . . . . . 6 ⊢ (𝑃 ∈ ℕ0 → (chr‘𝑍) = 𝑃) |
20 | 8, 9, 10, 19 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (chr‘𝑍) = 𝑃) |
21 | 18, 20 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (chr‘𝑊) = 𝑃) |
22 | 21, 8 | eqeltrd 2839 | . . 3 ⊢ (𝜑 → (chr‘𝑊) ∈ ℙ) |
23 | 13 | crngringd 19796 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ Ring) |
24 | ply1fermltl.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑍) | |
25 | 24, 14, 1 | vr1cl 21388 | . . . 4 ⊢ (𝑍 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
26 | 23, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
27 | ply1fermltl.a | . . . 4 ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) | |
28 | eqid 2738 | . . . . . . . 8 ⊢ (ℤRHom‘𝑍) = (ℤRHom‘𝑍) | |
29 | 28 | zrhrhm 20713 | . . . . . . 7 ⊢ (𝑍 ∈ Ring → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍)) |
30 | zringbas 20676 | . . . . . . . 8 ⊢ ℤ = (Base‘ℤring) | |
31 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
32 | 30, 31 | rhmf 19970 | . . . . . . 7 ⊢ ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍)) |
33 | 23, 29, 32 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍)) |
34 | ply1fermltl.1 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℤ) | |
35 | 33, 34 | ffvelrnd 6962 | . . . . 5 ⊢ (𝜑 → ((ℤRHom‘𝑍)‘𝐸) ∈ (Base‘𝑍)) |
36 | ply1fermltl.c | . . . . . 6 ⊢ 𝐶 = (algSc‘𝑊) | |
37 | 14, 36, 31, 1 | ply1sclcl 21457 | . . . . 5 ⊢ ((𝑍 ∈ Ring ∧ ((ℤRHom‘𝑍)‘𝐸) ∈ (Base‘𝑍)) → (𝐶‘((ℤRHom‘𝑍)‘𝐸)) ∈ (Base‘𝑊)) |
38 | 23, 35, 37 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶‘((ℤRHom‘𝑍)‘𝐸)) ∈ (Base‘𝑊)) |
39 | 27, 38 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑊)) |
40 | 1, 2, 6, 7, 16, 22, 26, 39 | freshmansdream 31484 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴))) |
41 | 21 | oveq1d 7290 | . 2 ⊢ (𝜑 → ((chr‘𝑊) ↑ (𝑋 + 𝐴)) = (𝑃 ↑ (𝑋 + 𝐴))) |
42 | 21 | oveq1d 7290 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
43 | 21 | oveq1d 7290 | . . . 4 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = (𝑃 ↑ 𝐴)) |
44 | 14 | ply1assa 21370 | . . . . . . . . 9 ⊢ (𝑍 ∈ CRing → 𝑊 ∈ AssAlg) |
45 | eqid 2738 | . . . . . . . . . 10 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
46 | 36, 45 | asclrhm 21094 | . . . . . . . . 9 ⊢ (𝑊 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
47 | 13, 44, 46 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ((Scalar‘𝑊) RingHom 𝑊)) |
48 | 13 | crnggrpd 19797 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ Grp) |
49 | 14 | ply1sca 21424 | . . . . . . . . . 10 ⊢ (𝑍 ∈ Grp → 𝑍 = (Scalar‘𝑊)) |
50 | 48, 49 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 = (Scalar‘𝑊)) |
51 | 50 | oveq1d 7290 | . . . . . . . 8 ⊢ (𝜑 → (𝑍 RingHom 𝑊) = ((Scalar‘𝑊) RingHom 𝑊)) |
52 | 47, 51 | eleqtrrd 2842 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝑍 RingHom 𝑊)) |
53 | eqid 2738 | . . . . . . . 8 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
54 | 53, 4 | rhmmhm 19966 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑍 RingHom 𝑊) → 𝐶 ∈ ((mulGrp‘𝑍) MndHom 𝑁)) |
55 | 52, 54 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((mulGrp‘𝑍) MndHom 𝑁)) |
56 | 8, 9, 10 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
57 | 53, 31 | mgpbas 19726 | . . . . . . 7 ⊢ (Base‘𝑍) = (Base‘(mulGrp‘𝑍)) |
58 | eqid 2738 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝑍)) = (.g‘(mulGrp‘𝑍)) | |
59 | 57, 58, 3 | mhmmulg 18744 | . . . . . 6 ⊢ ((𝐶 ∈ ((mulGrp‘𝑍) MndHom 𝑁) ∧ 𝑃 ∈ ℕ0 ∧ ((ℤRHom‘𝑍)‘𝐸) ∈ (Base‘𝑍)) → (𝐶‘(𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝑍)‘𝐸)))) |
60 | 55, 56, 35, 59 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸))) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝑍)‘𝐸)))) |
61 | 27 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸))) |
62 | 61 | oveq2d 7291 | . . . . 5 ⊢ (𝜑 → (𝑃 ↑ 𝐴) = (𝑃 ↑ (𝐶‘((ℤRHom‘𝑍)‘𝐸)))) |
63 | 60, 62 | eqtr4d 2781 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸))) = (𝑃 ↑ 𝐴)) |
64 | 11, 31, 58 | znfermltl 31562 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ((ℤRHom‘𝑍)‘𝐸) ∈ (Base‘𝑍)) → (𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸)) = ((ℤRHom‘𝑍)‘𝐸)) |
65 | 8, 35, 64 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸)) = ((ℤRHom‘𝑍)‘𝐸)) |
66 | 65 | fveq2d 6778 | . . . . 5 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸))) = (𝐶‘((ℤRHom‘𝑍)‘𝐸))) |
67 | 66, 27 | eqtr4di 2796 | . . . 4 ⊢ (𝜑 → (𝐶‘(𝑃(.g‘(mulGrp‘𝑍))((ℤRHom‘𝑍)‘𝐸))) = 𝐴) |
68 | 43, 63, 67 | 3eqtr2d 2784 | . . 3 ⊢ (𝜑 → ((chr‘𝑊) ↑ 𝐴) = 𝐴) |
69 | 42, 68 | oveq12d 7293 | . 2 ⊢ (𝜑 → (((chr‘𝑊) ↑ 𝑋) + ((chr‘𝑊) ↑ 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
70 | 40, 41, 69 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 ℙcprime 16376 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 MndHom cmhm 18428 Grpcgrp 18577 .gcmg 18700 mulGrpcmgp 19720 Ringcrg 19783 CRingccrg 19784 RingHom crh 19956 ℤringczring 20670 ℤRHomczrh 20701 chrcchr 20703 ℤ/nℤczn 20704 AssAlgcasa 21057 algSccascl 21059 var1cv1 21347 Poly1cpl1 21348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-prm 16377 df-phi 16467 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-gsum 17153 df-imas 17219 df-qus 17220 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-nsg 18753 df-eqg 18754 df-ghm 18832 df-cntz 18923 df-od 19136 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-srg 19742 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-rnghom 19959 df-drng 19993 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-sra 20434 df-rgmod 20435 df-lidl 20436 df-rsp 20437 df-2idl 20503 df-cnfld 20598 df-zring 20671 df-zrh 20705 df-chr 20707 df-zn 20708 df-assa 21060 df-ascl 21062 df-psr 21112 df-mvr 21113 df-mpl 21114 df-opsr 21116 df-psr1 21351 df-vr1 21352 df-ply1 21353 df-coe1 21354 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |