| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1fermltl | Structured version Visualization version GIF version | ||
| Description: Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| ply1fermltl.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑃) |
| ply1fermltl.w | ⊢ 𝑊 = (Poly1‘𝑍) |
| ply1fermltl.x | ⊢ 𝑋 = (var1‘𝑍) |
| ply1fermltl.l | ⊢ + = (+g‘𝑊) |
| ply1fermltl.n | ⊢ 𝑁 = (mulGrp‘𝑊) |
| ply1fermltl.t | ⊢ ↑ = (.g‘𝑁) |
| ply1fermltl.c | ⊢ 𝐶 = (algSc‘𝑊) |
| ply1fermltl.a | ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) |
| ply1fermltl.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| ply1fermltl.1 | ⊢ (𝜑 → 𝐸 ∈ ℤ) |
| Ref | Expression |
|---|---|
| ply1fermltl | ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1fermltl.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑍) | |
| 2 | ply1fermltl.x | . . 3 ⊢ 𝑋 = (var1‘𝑍) | |
| 3 | ply1fermltl.l | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | ply1fermltl.n | . . 3 ⊢ 𝑁 = (mulGrp‘𝑊) | |
| 5 | ply1fermltl.t | . . 3 ⊢ ↑ = (.g‘𝑁) | |
| 6 | ply1fermltl.c | . . 3 ⊢ 𝐶 = (algSc‘𝑊) | |
| 7 | ply1fermltl.a | . . 3 ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) | |
| 8 | eqid 2736 | . . 3 ⊢ (chr‘𝑍) = (chr‘𝑍) | |
| 9 | ply1fermltl.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 10 | prmnn 16698 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 11 | nnnn0 12513 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 12 | ply1fermltl.z | . . . . 5 ⊢ 𝑍 = (ℤ/nℤ‘𝑃) | |
| 13 | 12 | zncrng 21510 | . . . 4 ⊢ (𝑃 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 14 | 9, 10, 11, 13 | 4syl 19 | . . 3 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 15 | 12 | znchr 21528 | . . . . 5 ⊢ (𝑃 ∈ ℕ0 → (chr‘𝑍) = 𝑃) |
| 16 | 9, 10, 11, 15 | 4syl 19 | . . . 4 ⊢ (𝜑 → (chr‘𝑍) = 𝑃) |
| 17 | 16, 9 | eqeltrd 2835 | . . 3 ⊢ (𝜑 → (chr‘𝑍) ∈ ℙ) |
| 18 | ply1fermltl.1 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℤ) | |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18 | ply1fermltlchr 22255 | . 2 ⊢ (𝜑 → ((chr‘𝑍) ↑ (𝑋 + 𝐴)) = (((chr‘𝑍) ↑ 𝑋) + 𝐴)) |
| 20 | 16 | oveq1d 7425 | . 2 ⊢ (𝜑 → ((chr‘𝑍) ↑ (𝑋 + 𝐴)) = (𝑃 ↑ (𝑋 + 𝐴))) |
| 21 | 16 | oveq1d 7425 | . . 3 ⊢ (𝜑 → ((chr‘𝑍) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
| 22 | 21 | oveq1d 7425 | . 2 ⊢ (𝜑 → (((chr‘𝑍) ↑ 𝑋) + 𝐴) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| 23 | 19, 20, 22 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ℕcn 12245 ℕ0cn0 12506 ℤcz 12593 ℙcprime 16695 +gcplusg 17276 .gcmg 19055 mulGrpcmgp 20105 CRingccrg 20199 ℤRHomczrh 21465 chrcchr 21467 ℤ/nℤczn 21468 algSccascl 21817 var1cv1 22116 Poly1cpl1 22117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-ec 8726 df-qs 8730 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-gcd 16519 df-prm 16696 df-phi 16790 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-imas 17527 df-qus 17528 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-nsg 19112 df-eqg 19113 df-ghm 19201 df-cntz 19305 df-od 19514 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-sra 21136 df-rgmod 21137 df-lidl 21174 df-rsp 21175 df-2idl 21216 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-chr 21471 df-zn 21472 df-assa 21818 df-ascl 21820 df-psr 21874 df-mvr 21875 df-mpl 21876 df-opsr 21878 df-psr1 22120 df-vr1 22121 df-ply1 22122 df-coe1 22123 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |