| Step | Hyp | Ref
| Expression |
| 1 | | mpteq1 5184 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = (𝑘 ∈ ∅ ↦ (𝐹‘𝑘))) |
| 2 | | mpt0 6631 |
. . . . . . 7
⊢ (𝑘 ∈ ∅ ↦ (𝐹‘𝑘)) = ∅ |
| 3 | 1, 2 | eqtrdi 2784 |
. . . . . 6
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = ∅) |
| 4 | 3 | oveq2d 7371 |
. . . . 5
⊢ (𝑎 = ∅ → (𝑀 Σg
(𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = (𝑀 Σg
∅)) |
| 5 | 4 | eqeq1d 2735 |
. . . 4
⊢ (𝑎 = ∅ → ((𝑀 Σg
(𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = 0 ↔ (𝑀 Σg ∅) = 0
)) |
| 6 | 3 | rneqd 5884 |
. . . . 5
⊢ (𝑎 = ∅ → ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = ran ∅) |
| 7 | 6 | eleq2d 2819 |
. . . 4
⊢ (𝑎 = ∅ → ( 0 ∈ ran
(𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) ↔ 0 ∈ ran
∅)) |
| 8 | 5, 7 | bibi12d 345 |
. . 3
⊢ (𝑎 = ∅ → (((𝑀 Σg
(𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) ↔ ((𝑀 Σg ∅) = 0 ↔ 0 ∈ ran
∅))) |
| 9 | | mpteq1 5184 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) |
| 10 | 9 | oveq2d 7371 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = (𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) |
| 11 | 10 | eqeq1d 2735 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = 0 ↔ (𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 )) |
| 12 | 9 | rneqd 5884 |
. . . . 5
⊢ (𝑎 = 𝑏 → ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) |
| 13 | 12 | eleq2d 2819 |
. . . 4
⊢ (𝑎 = 𝑏 → ( 0 ∈ ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) |
| 14 | 11, 13 | bibi12d 345 |
. . 3
⊢ (𝑎 = 𝑏 → (((𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) ↔ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))))) |
| 15 | | mpteq1 5184 |
. . . . . 6
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) |
| 16 | 15 | oveq2d 7371 |
. . . . 5
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → (𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = (𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)))) |
| 17 | 16 | eqeq1d 2735 |
. . . 4
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → ((𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = 0 ↔ (𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) = 0 )) |
| 18 | 15 | rneqd 5884 |
. . . . 5
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = ran (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) |
| 19 | 18 | eleq2d 2819 |
. . . 4
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → ( 0 ∈ ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) ↔ 0 ∈ ran (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)))) |
| 20 | 17, 19 | bibi12d 345 |
. . 3
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → (((𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) ↔ ((𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))))) |
| 21 | | mpteq1 5184 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 22 | 21 | oveq2d 7371 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = (𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) |
| 23 | 22 | eqeq1d 2735 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = 0 ↔ (𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) = 0 )) |
| 24 | 21 | rneqd 5884 |
. . . . 5
⊢ (𝑎 = 𝐴 → ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 25 | 24 | eleq2d 2819 |
. . . 4
⊢ (𝑎 = 𝐴 → ( 0 ∈ ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) ↔ 0 ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) |
| 26 | 23, 25 | bibi12d 345 |
. . 3
⊢ (𝑎 = 𝐴 → (((𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) ↔ ((𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))))) |
| 27 | | domnprodeq0.m |
. . . . . . . . 9
⊢ 𝑀 = (mulGrp‘𝑅) |
| 28 | | eqid 2733 |
. . . . . . . . 9
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 29 | 27, 28 | ringidval 20109 |
. . . . . . . 8
⊢
(1r‘𝑅) = (0g‘𝑀) |
| 30 | 29 | gsum0 18600 |
. . . . . . 7
⊢ (𝑀 Σg
∅) = (1r‘𝑅) |
| 31 | 30 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑀 Σg ∅) =
(1r‘𝑅)) |
| 32 | | domnprodeq0.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 33 | 32 | idomdomd 20650 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Domn) |
| 34 | | domnnzr 20630 |
. . . . . . 7
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 35 | | domnprodeq0.1 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
| 36 | 28, 35 | nzrnz 20439 |
. . . . . . 7
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ 0
) |
| 37 | 33, 34, 36 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑅) ≠ 0 ) |
| 38 | 31, 37 | eqnetrd 2996 |
. . . . 5
⊢ (𝜑 → (𝑀 Σg ∅) ≠
0
) |
| 39 | 38 | neneqd 2934 |
. . . 4
⊢ (𝜑 → ¬ (𝑀 Σg ∅) = 0
) |
| 40 | | noel 4287 |
. . . . . 6
⊢ ¬
0 ∈
∅ |
| 41 | | rn0 5872 |
. . . . . . 7
⊢ ran
∅ = ∅ |
| 42 | 41 | eleq2i 2825 |
. . . . . 6
⊢ ( 0 ∈ ran
∅ ↔ 0 ∈
∅) |
| 43 | 40, 42 | mtbir 323 |
. . . . 5
⊢ ¬
0 ∈
ran ∅ |
| 44 | 43 | a1i 11 |
. . . 4
⊢ (𝜑 → ¬ 0 ∈ ran
∅) |
| 45 | 39, 44 | 2falsed 376 |
. . 3
⊢ (𝜑 → ((𝑀 Σg ∅) = 0 ↔ 0 ∈ ran
∅)) |
| 46 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) → ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) |
| 47 | 46 | orbi1d 916 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) → (((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ∨ (𝐹‘𝑙) = 0 ) ↔ ( 0 ∈ ran
(𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)) ∨ (𝐹‘𝑙) = 0 ))) |
| 48 | | domnprodeq0.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 49 | 27, 48 | mgpbas 20071 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑀) |
| 50 | | eqid 2733 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 51 | 27, 50 | mgpplusg 20070 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (+g‘𝑀) |
| 52 | 32 | idomcringd 20651 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 53 | 27 | crngmgp 20167 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ CMnd) |
| 55 | 54 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑀 ∈ CMnd) |
| 56 | | domnprodeq0.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 57 | 56 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝐴 ∈ Fin) |
| 58 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑏 ⊆ 𝐴) |
| 59 | 57, 58 | ssfid 9164 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑏 ∈ Fin) |
| 60 | | domnprodeq0.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 61 | 60 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ 𝑘 ∈ 𝑏) → 𝐹:𝐴⟶𝐵) |
| 62 | 58 | sselda 3930 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ 𝑘 ∈ 𝑏) → 𝑘 ∈ 𝐴) |
| 63 | 61, 62 | ffvelcdmd 7027 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ 𝑘 ∈ 𝑏) → (𝐹‘𝑘) ∈ 𝐵) |
| 64 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑙 ∈ (𝐴 ∖ 𝑏)) |
| 65 | 64 | eldifbd 3911 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → ¬ 𝑙 ∈ 𝑏) |
| 66 | 60 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝐹:𝐴⟶𝐵) |
| 67 | 64 | eldifad 3910 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑙 ∈ 𝐴) |
| 68 | 66, 67 | ffvelcdmd 7027 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝐹‘𝑙) ∈ 𝐵) |
| 69 | | fveq2 6831 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑙 → (𝐹‘𝑘) = (𝐹‘𝑙)) |
| 70 | 49, 51, 55, 59, 63, 64, 65, 68, 69 | gsumunsn 19880 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) = ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))(.r‘𝑅)(𝐹‘𝑙))) |
| 71 | 70 | eqeq1d 2735 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → ((𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) = 0 ↔ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))(.r‘𝑅)(𝐹‘𝑙)) = 0 )) |
| 72 | 33 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑅 ∈ Domn) |
| 73 | 63 | ralrimiva 3125 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → ∀𝑘 ∈ 𝑏 (𝐹‘𝑘) ∈ 𝐵) |
| 74 | 49, 55, 59, 73 | gsummptcl 19887 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) ∈ 𝐵) |
| 75 | 48, 50, 35 | domneq0 20632 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Domn ∧ (𝑀 Σg
(𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) ∈ 𝐵 ∧ (𝐹‘𝑙) ∈ 𝐵) → (((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))(.r‘𝑅)(𝐹‘𝑙)) = 0 ↔ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ∨ (𝐹‘𝑙) = 0 ))) |
| 76 | 72, 74, 68, 75 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))(.r‘𝑅)(𝐹‘𝑙)) = 0 ↔ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ∨ (𝐹‘𝑙) = 0 ))) |
| 77 | 71, 76 | bitrd 279 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → ((𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) = 0 ↔ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ∨ (𝐹‘𝑙) = 0 ))) |
| 78 | 77 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) → ((𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) = 0 ↔ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ∨ (𝐹‘𝑙) = 0 ))) |
| 79 | | eqid 2733 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)) = (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)) |
| 80 | | fvex 6844 |
. . . . . . . . 9
⊢ (𝐹‘𝑘) ∈ V |
| 81 | 79, 80 | elrnmpti 5908 |
. . . . . . . 8
⊢ ( 0 ∈ ran
(𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)) ↔ ∃𝑘 ∈ (𝑏 ∪ {𝑙}) 0 = (𝐹‘𝑘)) |
| 82 | | rexun 4145 |
. . . . . . . 8
⊢
(∃𝑘 ∈
(𝑏 ∪ {𝑙}) 0 = (𝐹‘𝑘) ↔ (∃𝑘 ∈ 𝑏 0 = (𝐹‘𝑘) ∨ ∃𝑘 ∈ {𝑙} 0 = (𝐹‘𝑘))) |
| 83 | | eqid 2733 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)) |
| 84 | 83, 80 | elrnmpti 5908 |
. . . . . . . . . 10
⊢ ( 0 ∈ ran
(𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)) ↔ ∃𝑘 ∈ 𝑏 0 = (𝐹‘𝑘)) |
| 85 | 84 | bicomi 224 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
𝑏 0 = (𝐹‘𝑘) ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) |
| 86 | | vex 3441 |
. . . . . . . . . 10
⊢ 𝑙 ∈ V |
| 87 | 69 | eqeq2d 2744 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑙 → ( 0 = (𝐹‘𝑘) ↔ 0 = (𝐹‘𝑙))) |
| 88 | | eqcom 2740 |
. . . . . . . . . . 11
⊢ ( 0 = (𝐹‘𝑙) ↔ (𝐹‘𝑙) = 0 ) |
| 89 | 87, 88 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑙 → ( 0 = (𝐹‘𝑘) ↔ (𝐹‘𝑙) = 0 )) |
| 90 | 86, 89 | rexsn 4636 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
{𝑙} 0 = (𝐹‘𝑘) ↔ (𝐹‘𝑙) = 0 ) |
| 91 | 85, 90 | orbi12i 914 |
. . . . . . . 8
⊢
((∃𝑘 ∈
𝑏 0 = (𝐹‘𝑘) ∨ ∃𝑘 ∈ {𝑙} 0 = (𝐹‘𝑘)) ↔ ( 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)) ∨ (𝐹‘𝑙) = 0 )) |
| 92 | 81, 82, 91 | 3bitri 297 |
. . . . . . 7
⊢ ( 0 ∈ ran
(𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)) ↔ ( 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)) ∨ (𝐹‘𝑙) = 0 )) |
| 93 | 92 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) → ( 0 ∈ ran (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)) ↔ ( 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)) ∨ (𝐹‘𝑙) = 0 ))) |
| 94 | 47, 78, 93 | 3bitr4d 311 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) → ((𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)))) |
| 95 | 94 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) → ((𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))))) |
| 96 | 95 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ (𝐴 ∖ 𝑏))) → (((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) → ((𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))))) |
| 97 | 8, 14, 20, 26, 45, 96, 56 | findcard2d 9087 |
. 2
⊢ (𝜑 → ((𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) |
| 98 | 60 | feqmptd 6899 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 99 | 98 | oveq2d 7371 |
. . 3
⊢ (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) |
| 100 | 99 | eqeq1d 2735 |
. 2
⊢ (𝜑 → ((𝑀 Σg 𝐹) = 0 ↔ (𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) = 0 )) |
| 101 | 98 | rneqd 5884 |
. . 3
⊢ (𝜑 → ran 𝐹 = ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 102 | 101 | eleq2d 2819 |
. 2
⊢ (𝜑 → ( 0 ∈ ran 𝐹 ↔ 0 ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) |
| 103 | 97, 100, 102 | 3bitr4d 311 |
1
⊢ (𝜑 → ((𝑀 Σg 𝐹) = 0 ↔ 0 ∈ ran 𝐹)) |