| Step | Hyp | Ref
| Expression |
| 1 | | deg1prod.8 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶(𝐵 ∖ { 0 })) |
| 2 | 1 | feqmptd 6899 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 3 | 2 | oveq2d 7371 |
. . 3
⊢ (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) |
| 4 | 3 | fveq2d 6835 |
. 2
⊢ (𝜑 → (𝐷‘(𝑀 Σg 𝐹)) = (𝐷‘(𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))))) |
| 5 | | mpteq1 5184 |
. . . . . 6
⊢ (𝑎 = ∅ → (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = (𝑘 ∈ ∅ ↦ (𝐹‘𝑘))) |
| 6 | 5 | oveq2d 7371 |
. . . . 5
⊢ (𝑎 = ∅ → (𝑀 Σg
(𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = (𝑀 Σg (𝑘 ∈ ∅ ↦ (𝐹‘𝑘)))) |
| 7 | 6 | fveq2d 6835 |
. . . 4
⊢ (𝑎 = ∅ → (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)))) = (𝐷‘(𝑀 Σg (𝑘 ∈ ∅ ↦ (𝐹‘𝑘))))) |
| 8 | | sumeq1 15603 |
. . . 4
⊢ (𝑎 = ∅ → Σ𝑘 ∈ 𝑎 (𝐷‘(𝐹‘𝑘)) = Σ𝑘 ∈ ∅ (𝐷‘(𝐹‘𝑘))) |
| 9 | 7, 8 | eqeq12d 2749 |
. . 3
⊢ (𝑎 = ∅ → ((𝐷‘(𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑎 (𝐷‘(𝐹‘𝑘)) ↔ (𝐷‘(𝑀 Σg (𝑘 ∈ ∅ ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ ∅ (𝐷‘(𝐹‘𝑘)))) |
| 10 | | mpteq1 5184 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) |
| 11 | 10 | oveq2d 7371 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = (𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) |
| 12 | 11 | fveq2d 6835 |
. . . 4
⊢ (𝑎 = 𝑏 → (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)))) = (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))))) |
| 13 | | sumeq1 15603 |
. . . 4
⊢ (𝑎 = 𝑏 → Σ𝑘 ∈ 𝑎 (𝐷‘(𝐹‘𝑘)) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) |
| 14 | 12, 13 | eqeq12d 2749 |
. . 3
⊢ (𝑎 = 𝑏 → ((𝐷‘(𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑎 (𝐷‘(𝐹‘𝑘)) ↔ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘)))) |
| 15 | | mpteq1 5184 |
. . . . . 6
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) |
| 16 | 15 | oveq2d 7371 |
. . . . 5
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → (𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = (𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)))) |
| 17 | 16 | fveq2d 6835 |
. . . 4
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)))) = (𝐷‘(𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))))) |
| 18 | | sumeq1 15603 |
. . . 4
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → Σ𝑘 ∈ 𝑎 (𝐷‘(𝐹‘𝑘)) = Σ𝑘 ∈ (𝑏 ∪ {𝑙})(𝐷‘(𝐹‘𝑘))) |
| 19 | 17, 18 | eqeq12d 2749 |
. . 3
⊢ (𝑎 = (𝑏 ∪ {𝑙}) → ((𝐷‘(𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑎 (𝐷‘(𝐹‘𝑘)) ↔ (𝐷‘(𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ (𝑏 ∪ {𝑙})(𝐷‘(𝐹‘𝑘)))) |
| 20 | | mpteq1 5184 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 21 | 20 | oveq2d 7371 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘))) = (𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) |
| 22 | 21 | fveq2d 6835 |
. . . 4
⊢ (𝑎 = 𝐴 → (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)))) = (𝐷‘(𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))))) |
| 23 | | sumeq1 15603 |
. . . 4
⊢ (𝑎 = 𝐴 → Σ𝑘 ∈ 𝑎 (𝐷‘(𝐹‘𝑘)) = Σ𝑘 ∈ 𝐴 (𝐷‘(𝐹‘𝑘))) |
| 24 | 22, 23 | eqeq12d 2749 |
. . 3
⊢ (𝑎 = 𝐴 → ((𝐷‘(𝑀 Σg (𝑘 ∈ 𝑎 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑎 (𝐷‘(𝐹‘𝑘)) ↔ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝐴 (𝐷‘(𝐹‘𝑘)))) |
| 25 | | mpt0 6631 |
. . . . . . . . 9
⊢ (𝑘 ∈ ∅ ↦ (𝐹‘𝑘)) = ∅ |
| 26 | 25 | oveq2i 7366 |
. . . . . . . 8
⊢ (𝑀 Σg
(𝑘 ∈ ∅ ↦
(𝐹‘𝑘))) = (𝑀 Σg
∅) |
| 27 | | deg1prod.4 |
. . . . . . . . . 10
⊢ 𝑀 = (mulGrp‘𝑃) |
| 28 | | eqid 2733 |
. . . . . . . . . 10
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 29 | 27, 28 | ringidval 20109 |
. . . . . . . . 9
⊢
(1r‘𝑃) = (0g‘𝑀) |
| 30 | 29 | gsum0 18600 |
. . . . . . . 8
⊢ (𝑀 Σg
∅) = (1r‘𝑃) |
| 31 | 26, 30 | eqtri 2756 |
. . . . . . 7
⊢ (𝑀 Σg
(𝑘 ∈ ∅ ↦
(𝐹‘𝑘))) = (1r‘𝑃) |
| 32 | 31 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ ∅ ↦ (𝐹‘𝑘))) = (1r‘𝑃)) |
| 33 | 32 | fveq2d 6835 |
. . . . 5
⊢ (𝜑 → (𝐷‘(𝑀 Σg (𝑘 ∈ ∅ ↦ (𝐹‘𝑘)))) = (𝐷‘(1r‘𝑃))) |
| 34 | | deg1prod.7 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 35 | 34 | idomdomd 20650 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Domn) |
| 36 | | domnring 20631 |
. . . . . . 7
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 37 | | deg1prod.2 |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
| 38 | | eqid 2733 |
. . . . . . . 8
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 39 | | eqid 2733 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 40 | 37, 38, 39, 28 | ply1scl1 22226 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
| 41 | 35, 36, 40 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
| 42 | 41 | fveq2d 6835 |
. . . . 5
⊢ (𝜑 → (𝐷‘((algSc‘𝑃)‘(1r‘𝑅))) = (𝐷‘(1r‘𝑃))) |
| 43 | 34 | idomringd 20652 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 44 | | eqid 2733 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 45 | 44, 39, 43 | ringidcld 20192 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 46 | | domnnzr 20630 |
. . . . . . 7
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 47 | | eqid 2733 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 48 | 39, 47 | nzrnz 20439 |
. . . . . . 7
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ (0g‘𝑅)) |
| 49 | 35, 46, 48 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑅) ≠
(0g‘𝑅)) |
| 50 | | deg1prod.1 |
. . . . . . 7
⊢ 𝐷 = (deg1‘𝑅) |
| 51 | 50, 37, 44, 38, 47 | deg1scl 26065 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅) ∧
(1r‘𝑅)
≠ (0g‘𝑅)) → (𝐷‘((algSc‘𝑃)‘(1r‘𝑅))) = 0) |
| 52 | 43, 45, 49, 51 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (𝐷‘((algSc‘𝑃)‘(1r‘𝑅))) = 0) |
| 53 | 33, 42, 52 | 3eqtr2d 2774 |
. . . 4
⊢ (𝜑 → (𝐷‘(𝑀 Σg (𝑘 ∈ ∅ ↦ (𝐹‘𝑘)))) = 0) |
| 54 | | sum0 15635 |
. . . 4
⊢
Σ𝑘 ∈
∅ (𝐷‘(𝐹‘𝑘)) = 0 |
| 55 | 53, 54 | eqtr4di 2786 |
. . 3
⊢ (𝜑 → (𝐷‘(𝑀 Σg (𝑘 ∈ ∅ ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ ∅ (𝐷‘(𝐹‘𝑘))) |
| 56 | | deg1prod.3 |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑃) |
| 57 | | eqid 2733 |
. . . . . . . . 9
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 58 | | deg1prod.5 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑃) |
| 59 | 35 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑅 ∈ Domn) |
| 60 | 27, 56 | mgpbas 20071 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑀) |
| 61 | 37 | ply1idom 26077 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ IDomn → 𝑃 ∈ IDomn) |
| 62 | 34, 61 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ IDomn) |
| 63 | 62 | idomcringd 20651 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ CRing) |
| 64 | 27 | crngmgp 20167 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ CRing → 𝑀 ∈ CMnd) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ CMnd) |
| 66 | 65 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑀 ∈ CMnd) |
| 67 | | deg1prod.6 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 68 | 67 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝐴 ∈ Fin) |
| 69 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑏 ⊆ 𝐴) |
| 70 | 68, 69 | ssfid 9164 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑏 ∈ Fin) |
| 71 | 1 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ 𝑘 ∈ 𝑏) → 𝐹:𝐴⟶(𝐵 ∖ { 0 })) |
| 72 | 69 | sselda 3930 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ 𝑘 ∈ 𝑏) → 𝑘 ∈ 𝐴) |
| 73 | 71, 72 | ffvelcdmd 7027 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ 𝑘 ∈ 𝑏) → (𝐹‘𝑘) ∈ (𝐵 ∖ { 0 })) |
| 74 | 73 | eldifad 3910 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ 𝑘 ∈ 𝑏) → (𝐹‘𝑘) ∈ 𝐵) |
| 75 | 74 | ralrimiva 3125 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → ∀𝑘 ∈ 𝑏 (𝐹‘𝑘) ∈ 𝐵) |
| 76 | 60, 66, 70, 75 | gsummptcl 19887 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) ∈ 𝐵) |
| 77 | | nfv 1915 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝜑 ∧ 𝑏 ⊆ 𝐴) |
| 78 | | eqid 2733 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)) |
| 79 | 58 | fvexi 6845 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
| 80 | 79 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 0 ∈ V) |
| 81 | 1 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑏) → 𝐹:𝐴⟶(𝐵 ∖ { 0 })) |
| 82 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 𝑏 ⊆ 𝐴) |
| 83 | 82 | sselda 3930 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑏) → 𝑘 ∈ 𝐴) |
| 84 | 81, 83 | ffvelcdmd 7027 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑏) → (𝐹‘𝑘) ∈ (𝐵 ∖ { 0 })) |
| 85 | | eldifsni 4743 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑘) ∈ (𝐵 ∖ { 0 }) → (𝐹‘𝑘) ≠ 0 ) |
| 86 | 84, 85 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑏) → (𝐹‘𝑘) ≠ 0 ) |
| 87 | 86 | necomd 2984 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑏) → 0 ≠ (𝐹‘𝑘)) |
| 88 | 77, 78, 80, 87 | nelrnmpt 5913 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → ¬ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) |
| 89 | 62 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 𝑃 ∈ IDomn) |
| 90 | 67 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 𝐴 ∈ Fin) |
| 91 | 90, 82 | ssfid 9164 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 𝑏 ∈ Fin) |
| 92 | 84 | eldifad 3910 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑏) → (𝐹‘𝑘) ∈ 𝐵) |
| 93 | 92 | fmpttd 7057 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)):𝑏⟶𝐵) |
| 94 | 27, 56, 58, 89, 91, 93 | domnprodeq0 33286 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) = 0 ↔ 0 ∈ ran (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) |
| 95 | 94 | necon3abid 2965 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) ≠ 0 ↔ ¬ 0 ∈ ran
(𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) |
| 96 | 88, 95 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → (𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) ≠ 0 ) |
| 97 | 96 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) ≠ 0 ) |
| 98 | 1 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝐹:𝐴⟶(𝐵 ∖ { 0 })) |
| 99 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑙 ∈ (𝐴 ∖ 𝑏)) |
| 100 | 99 | eldifad 3910 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → 𝑙 ∈ 𝐴) |
| 101 | 98, 100 | ffvelcdmd 7027 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝐹‘𝑙) ∈ (𝐵 ∖ { 0 })) |
| 102 | 101 | eldifad 3910 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝐹‘𝑙) ∈ 𝐵) |
| 103 | | eldifsni 4743 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑙) ∈ (𝐵 ∖ { 0 }) → (𝐹‘𝑙) ≠ 0 ) |
| 104 | 101, 103 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝐹‘𝑙) ≠ 0 ) |
| 105 | 50, 37, 56, 57, 58, 59, 76, 97, 102, 104 | deg1mul 26067 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝐷‘((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))(.r‘𝑃)(𝐹‘𝑙))) = ((𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) + (𝐷‘(𝐹‘𝑙)))) |
| 106 | 105 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → (𝐷‘((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))(.r‘𝑃)(𝐹‘𝑙))) = ((𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) + (𝐷‘(𝐹‘𝑙)))) |
| 107 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) |
| 108 | 107 | oveq1d 7370 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → ((𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) + (𝐷‘(𝐹‘𝑙))) = (Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘)) + (𝐷‘(𝐹‘𝑙)))) |
| 109 | 106, 108 | eqtr2d 2769 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → (Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘)) + (𝐷‘(𝐹‘𝑙))) = (𝐷‘((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))(.r‘𝑃)(𝐹‘𝑙)))) |
| 110 | | nfv 1915 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) |
| 111 | | nfcv 2895 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝐷 |
| 112 | | nfcv 2895 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘𝑀 |
| 113 | | nfcv 2895 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘
Σg |
| 114 | | nfmpt1 5194 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)) |
| 115 | 112, 113,
114 | nfov 7385 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘))) |
| 116 | 111, 115 | nffv 6841 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) |
| 117 | | nfcv 2895 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝑏 |
| 118 | 117 | nfsum1 15604 |
. . . . . . . . 9
⊢
Ⅎ𝑘Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘)) |
| 119 | 116, 118 | nfeq 2909 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘)) |
| 120 | 110, 119 | nfan 1900 |
. . . . . . 7
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) |
| 121 | | nfcv 2895 |
. . . . . . 7
⊢
Ⅎ𝑘(𝐷‘(𝐹‘𝑙)) |
| 122 | 67 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → 𝐴 ∈ Fin) |
| 123 | | simpllr 775 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → 𝑏 ⊆ 𝐴) |
| 124 | 122, 123 | ssfid 9164 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → 𝑏 ∈ Fin) |
| 125 | | simplr 768 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → 𝑙 ∈ (𝐴 ∖ 𝑏)) |
| 126 | 125 | eldifbd 3911 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → ¬ 𝑙 ∈ 𝑏) |
| 127 | 43 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) ∧ 𝑘 ∈ 𝑏) → 𝑅 ∈ Ring) |
| 128 | 1 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) ∧ 𝑘 ∈ 𝑏) → 𝐹:𝐴⟶(𝐵 ∖ { 0 })) |
| 129 | 123 | sselda 3930 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) ∧ 𝑘 ∈ 𝑏) → 𝑘 ∈ 𝐴) |
| 130 | 128, 129 | ffvelcdmd 7027 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) ∧ 𝑘 ∈ 𝑏) → (𝐹‘𝑘) ∈ (𝐵 ∖ { 0 })) |
| 131 | 130 | eldifad 3910 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) ∧ 𝑘 ∈ 𝑏) → (𝐹‘𝑘) ∈ 𝐵) |
| 132 | 130, 85 | syl 17 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) ∧ 𝑘 ∈ 𝑏) → (𝐹‘𝑘) ≠ 0 ) |
| 133 | 50, 37, 58, 56 | deg1nn0cl 26040 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝐹‘𝑘) ∈ 𝐵 ∧ (𝐹‘𝑘) ≠ 0 ) → (𝐷‘(𝐹‘𝑘)) ∈
ℕ0) |
| 134 | 127, 131,
132, 133 | syl3anc 1373 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) ∧ 𝑘 ∈ 𝑏) → (𝐷‘(𝐹‘𝑘)) ∈
ℕ0) |
| 135 | 134 | nn0cnd 12455 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) ∧ 𝑘 ∈ 𝑏) → (𝐷‘(𝐹‘𝑘)) ∈ ℂ) |
| 136 | | 2fveq3 6836 |
. . . . . . 7
⊢ (𝑘 = 𝑙 → (𝐷‘(𝐹‘𝑘)) = (𝐷‘(𝐹‘𝑙))) |
| 137 | 43 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → 𝑅 ∈ Ring) |
| 138 | 1 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → 𝐹:𝐴⟶(𝐵 ∖ { 0 })) |
| 139 | 125 | eldifad 3910 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → 𝑙 ∈ 𝐴) |
| 140 | 138, 139 | ffvelcdmd 7027 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → (𝐹‘𝑙) ∈ (𝐵 ∖ { 0 })) |
| 141 | 140 | eldifad 3910 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → (𝐹‘𝑙) ∈ 𝐵) |
| 142 | 140, 103 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → (𝐹‘𝑙) ≠ 0 ) |
| 143 | 50, 37, 58, 56 | deg1nn0cl 26040 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝐹‘𝑙) ∈ 𝐵 ∧ (𝐹‘𝑙) ≠ 0 ) → (𝐷‘(𝐹‘𝑙)) ∈
ℕ0) |
| 144 | 137, 141,
142, 143 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → (𝐷‘(𝐹‘𝑙)) ∈
ℕ0) |
| 145 | 144 | nn0cnd 12455 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → (𝐷‘(𝐹‘𝑙)) ∈ ℂ) |
| 146 | 120, 121,
124, 125, 126, 135, 136, 145 | fsumsplitsn 15658 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → Σ𝑘 ∈ (𝑏 ∪ {𝑙})(𝐷‘(𝐹‘𝑘)) = (Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘)) + (𝐷‘(𝐹‘𝑙)))) |
| 147 | 27, 57 | mgpplusg 20070 |
. . . . . . . . 9
⊢
(.r‘𝑃) = (+g‘𝑀) |
| 148 | 99 | eldifbd 3911 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → ¬ 𝑙 ∈ 𝑏) |
| 149 | | fveq2 6831 |
. . . . . . . . 9
⊢ (𝑘 = 𝑙 → (𝐹‘𝑘) = (𝐹‘𝑙)) |
| 150 | 60, 147, 66, 70, 74, 99, 148, 102, 149 | gsumunsn 19880 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘))) = ((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))(.r‘𝑃)(𝐹‘𝑙))) |
| 151 | 150 | fveq2d 6835 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → (𝐷‘(𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)))) = (𝐷‘((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))(.r‘𝑃)(𝐹‘𝑙)))) |
| 152 | 151 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → (𝐷‘(𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)))) = (𝐷‘((𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))(.r‘𝑃)(𝐹‘𝑙)))) |
| 153 | 109, 146,
152 | 3eqtr4rd 2779 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) ∧ (𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘))) → (𝐷‘(𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ (𝑏 ∪ {𝑙})(𝐷‘(𝐹‘𝑘))) |
| 154 | 153 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑙 ∈ (𝐴 ∖ 𝑏)) → ((𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘)) → (𝐷‘(𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ (𝑏 ∪ {𝑙})(𝐷‘(𝐹‘𝑘)))) |
| 155 | 154 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ (𝐴 ∖ 𝑏))) → ((𝐷‘(𝑀 Σg (𝑘 ∈ 𝑏 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝑏 (𝐷‘(𝐹‘𝑘)) → (𝐷‘(𝑀 Σg (𝑘 ∈ (𝑏 ∪ {𝑙}) ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ (𝑏 ∪ {𝑙})(𝐷‘(𝐹‘𝑘)))) |
| 156 | 9, 14, 19, 24, 55, 155, 67 | findcard2d 9087 |
. 2
⊢ (𝜑 → (𝐷‘(𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝐴 (𝐷‘(𝐹‘𝑘))) |
| 157 | 4, 156 | eqtrd 2768 |
1
⊢ (𝜑 → (𝐷‘(𝑀 Σg 𝐹)) = Σ𝑘 ∈ 𝐴 (𝐷‘(𝐹‘𝑘))) |