Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimedgnedg Structured version   Visualization version   GIF version

Theorem grlimedgnedg 48255
Description: In general, the image of an edge of a graph by a local isomprphism is not an edge of the other graph, proven by an example (see gpg5edgnedg 48254). This theorem proves that the analogon (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) 𝐾𝐼)) → (𝐹𝐾) ∈ 𝐸) of grimedgi 48060 for ordinarily isomorphic graphs does not hold in general. (Contributed by AV, 30-Dec-2025.)
Assertion
Ref Expression
grlimedgnedg 𝑔 ∈ USGraph ∃ ∈ USGraph ∃𝑓 ∈ (𝑔 GraphLocIso )∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))
Distinct variable group:   𝑎,𝑏,𝑓,𝑔,

Proof of Theorem grlimedgnedg
StepHypRef Expression
1 oveq1 7359 . . . 4 (𝑔 = (5 gPetersenGr 1) → (𝑔 GraphLocIso ) = ((5 gPetersenGr 1) GraphLocIso ))
2 fveq2 6828 . . . . 5 (𝑔 = (5 gPetersenGr 1) → (Vtx‘𝑔) = (Vtx‘(5 gPetersenGr 1)))
3 fveq2 6828 . . . . . . . 8 (𝑔 = (5 gPetersenGr 1) → (Edg‘𝑔) = (Edg‘(5 gPetersenGr 1)))
43eleq2d 2819 . . . . . . 7 (𝑔 = (5 gPetersenGr 1) → ({𝑎, 𝑏} ∈ (Edg‘𝑔) ↔ {𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1))))
54anbi1d 631 . . . . . 6 (𝑔 = (5 gPetersenGr 1) → (({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))))
62, 5rexeqbidv 3314 . . . . 5 (𝑔 = (5 gPetersenGr 1) → (∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))))
72, 6rexeqbidv 3314 . . . 4 (𝑔 = (5 gPetersenGr 1) → (∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))))
81, 7rexeqbidv 3314 . . 3 (𝑔 = (5 gPetersenGr 1) → (∃𝑓 ∈ (𝑔 GraphLocIso )∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ∃𝑓 ∈ ((5 gPetersenGr 1) GraphLocIso )∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))))
9 oveq2 7360 . . . 4 ( = (5 gPetersenGr 2) → ((5 gPetersenGr 1) GraphLocIso ) = ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2)))
10 eqidd 2734 . . . . . . 7 ( = (5 gPetersenGr 2) → {(𝑓𝑎), (𝑓𝑏)} = {(𝑓𝑎), (𝑓𝑏)})
11 fveq2 6828 . . . . . . 7 ( = (5 gPetersenGr 2) → (Edg‘) = (Edg‘(5 gPetersenGr 2)))
1210, 11neleq12d 3038 . . . . . 6 ( = (5 gPetersenGr 2) → ({(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘) ↔ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2))))
1312anbi2d 630 . . . . 5 ( = (5 gPetersenGr 2) → (({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))))
14132rexbidv 3198 . . . 4 ( = (5 gPetersenGr 2) → (∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))))
159, 14rexeqbidv 3314 . . 3 ( = (5 gPetersenGr 2) → (∃𝑓 ∈ ((5 gPetersenGr 1) GraphLocIso )∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ∃𝑓 ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2))∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))))
16 5eluz3 12783 . . . 4 5 ∈ (ℤ‘3)
17 gpgprismgrusgra 48182 . . . 4 (5 ∈ (ℤ‘3) → (5 gPetersenGr 1) ∈ USGraph)
1816, 17mp1i 13 . . 3 (⊤ → (5 gPetersenGr 1) ∈ USGraph)
19 pgjsgr 48216 . . . 4 (5 gPetersenGr 2) ∈ USGraph
2019a1i 11 . . 3 (⊤ → (5 gPetersenGr 2) ∈ USGraph)
21 fveq1 6827 . . . . . . 7 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → (𝑓𝑎) = (( I ↾ ({0, 1} × (0..^5)))‘𝑎))
22 fveq1 6827 . . . . . . 7 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → (𝑓𝑏) = (( I ↾ ({0, 1} × (0..^5)))‘𝑏))
2321, 22preq12d 4693 . . . . . 6 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → {(𝑓𝑎), (𝑓𝑏)} = {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)})
24 eqidd 2734 . . . . . 6 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → (Edg‘(5 gPetersenGr 2)) = (Edg‘(5 gPetersenGr 2)))
2523, 24neleq12d 3038 . . . . 5 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → ({(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2)) ↔ {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2))))
2625anbi2d 630 . . . 4 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → (({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2))) ↔ ({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))))
27 preq1 4685 . . . . . 6 (𝑎 = ⟨1, 0⟩ → {𝑎, 𝑏} = {⟨1, 0⟩, 𝑏})
2827eleq1d 2818 . . . . 5 (𝑎 = ⟨1, 0⟩ → ({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ↔ {⟨1, 0⟩, 𝑏} ∈ (Edg‘(5 gPetersenGr 1))))
29 fveq2 6828 . . . . . . 7 (𝑎 = ⟨1, 0⟩ → (( I ↾ ({0, 1} × (0..^5)))‘𝑎) = (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩))
3029preq1d 4691 . . . . . 6 (𝑎 = ⟨1, 0⟩ → {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} = {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)})
31 eqidd 2734 . . . . . 6 (𝑎 = ⟨1, 0⟩ → (Edg‘(5 gPetersenGr 2)) = (Edg‘(5 gPetersenGr 2)))
3230, 31neleq12d 3038 . . . . 5 (𝑎 = ⟨1, 0⟩ → ({(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2)) ↔ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2))))
3328, 32anbi12d 632 . . . 4 (𝑎 = ⟨1, 0⟩ → (({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2))) ↔ ({⟨1, 0⟩, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))))
34 preq2 4686 . . . . . 6 (𝑏 = ⟨1, 1⟩ → {⟨1, 0⟩, 𝑏} = {⟨1, 0⟩, ⟨1, 1⟩})
3534eleq1d 2818 . . . . 5 (𝑏 = ⟨1, 1⟩ → ({⟨1, 0⟩, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ↔ {⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1))))
36 fveq2 6828 . . . . . . 7 (𝑏 = ⟨1, 1⟩ → (( I ↾ ({0, 1} × (0..^5)))‘𝑏) = (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩))
3736preq2d 4692 . . . . . 6 (𝑏 = ⟨1, 1⟩ → {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} = {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)})
38 eqidd 2734 . . . . . 6 (𝑏 = ⟨1, 1⟩ → (Edg‘(5 gPetersenGr 2)) = (Edg‘(5 gPetersenGr 2)))
3937, 38neleq12d 3038 . . . . 5 (𝑏 = ⟨1, 1⟩ → ({(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2)) ↔ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2))))
4035, 39anbi12d 632 . . . 4 (𝑏 = ⟨1, 1⟩ → (({⟨1, 0⟩, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2))) ↔ ({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2)))))
41 gpg5grlim 48217 . . . . 5 ( I ↾ ({0, 1} × (0..^5))) ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2))
4241a1i 11 . . . 4 (⊤ → ( I ↾ ({0, 1} × (0..^5))) ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2)))
43 1ex 11115 . . . . . . . 8 1 ∈ V
4443prid2 4715 . . . . . . 7 1 ∈ {0, 1}
45 5nn 12218 . . . . . . . 8 5 ∈ ℕ
46 lbfzo0 13601 . . . . . . . 8 (0 ∈ (0..^5) ↔ 5 ∈ ℕ)
4745, 46mpbir 231 . . . . . . 7 0 ∈ (0..^5)
4844, 47opelxpii 5657 . . . . . 6 ⟨1, 0⟩ ∈ ({0, 1} × (0..^5))
49 1elfzo1ceilhalf1 47461 . . . . . . . 8 (5 ∈ (ℤ‘3) → 1 ∈ (1..^(⌈‘(5 / 2))))
5016, 49ax-mp 5 . . . . . . 7 1 ∈ (1..^(⌈‘(5 / 2)))
51 eqid 2733 . . . . . . . 8 (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2)))
52 eqid 2733 . . . . . . . 8 (0..^5) = (0..^5)
5351, 52gpgvtx 48167 . . . . . . 7 ((5 ∈ ℕ ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) → (Vtx‘(5 gPetersenGr 1)) = ({0, 1} × (0..^5)))
5445, 50, 53mp2an 692 . . . . . 6 (Vtx‘(5 gPetersenGr 1)) = ({0, 1} × (0..^5))
5548, 54eleqtrri 2832 . . . . 5 ⟨1, 0⟩ ∈ (Vtx‘(5 gPetersenGr 1))
5655a1i 11 . . . 4 (⊤ → ⟨1, 0⟩ ∈ (Vtx‘(5 gPetersenGr 1)))
57 1nn0 12404 . . . . . . . 8 1 ∈ ℕ0
5845nnzi 12502 . . . . . . . 8 5 ∈ ℤ
59 1lt5 12307 . . . . . . . 8 1 < 5
60 elfzo0z 13603 . . . . . . . 8 (1 ∈ (0..^5) ↔ (1 ∈ ℕ0 ∧ 5 ∈ ℤ ∧ 1 < 5))
6157, 58, 59, 60mpbir3an 1342 . . . . . . 7 1 ∈ (0..^5)
6244, 61opelxpii 5657 . . . . . 6 ⟨1, 1⟩ ∈ ({0, 1} × (0..^5))
6362, 54eleqtrri 2832 . . . . 5 ⟨1, 1⟩ ∈ (Vtx‘(5 gPetersenGr 1))
6463a1i 11 . . . 4 (⊤ → ⟨1, 1⟩ ∈ (Vtx‘(5 gPetersenGr 1)))
65 gpg5edgnedg 48254 . . . . . 6 ({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {⟨1, 0⟩, ⟨1, 1⟩} ∉ (Edg‘(5 gPetersenGr 2)))
66 fvresi 7113 . . . . . . . . . 10 (⟨1, 0⟩ ∈ ({0, 1} × (0..^5)) → (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩) = ⟨1, 0⟩)
6748, 66ax-mp 5 . . . . . . . . 9 (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩) = ⟨1, 0⟩
68 fvresi 7113 . . . . . . . . . 10 (⟨1, 1⟩ ∈ ({0, 1} × (0..^5)) → (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩) = ⟨1, 1⟩)
6962, 68ax-mp 5 . . . . . . . . 9 (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩) = ⟨1, 1⟩
7067, 69preq12i 4690 . . . . . . . 8 {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} = {⟨1, 0⟩, ⟨1, 1⟩}
71 neleq1 3039 . . . . . . . 8 ({(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} = {⟨1, 0⟩, ⟨1, 1⟩} → ({(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2)) ↔ {⟨1, 0⟩, ⟨1, 1⟩} ∉ (Edg‘(5 gPetersenGr 2))))
7270, 71ax-mp 5 . . . . . . 7 ({(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2)) ↔ {⟨1, 0⟩, ⟨1, 1⟩} ∉ (Edg‘(5 gPetersenGr 2)))
7372anbi2i 623 . . . . . 6 (({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2))) ↔ ({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {⟨1, 0⟩, ⟨1, 1⟩} ∉ (Edg‘(5 gPetersenGr 2))))
7465, 73mpbir 231 . . . . 5 ({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2)))
7574a1i 11 . . . 4 (⊤ → ({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2))))
7626, 33, 40, 42, 56, 64, 753rspcedvdw 3591 . . 3 (⊤ → ∃𝑓 ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2))∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2))))
778, 15, 18, 20, 762rspcedvdw 3587 . 2 (⊤ → ∃𝑔 ∈ USGraph ∃ ∈ USGraph ∃𝑓 ∈ (𝑔 GraphLocIso )∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)))
7877mptru 1548 1 𝑔 ∈ USGraph ∃ ∈ USGraph ∃𝑓 ∈ (𝑔 GraphLocIso )∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2113  wnel 3033  wrex 3057  {cpr 4577  cop 4581   class class class wbr 5093   I cid 5513   × cxp 5617  cres 5621  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   < clt 11153   / cdiv 11781  cn 12132  2c2 12187  3c3 12188  5c5 12190  0cn0 12388  cz 12475  cuz 12738  ..^cfzo 13556  cceil 13697  Vtxcvtx 28976  Edgcedg 29027  USGraphcusgr 29129   GraphLocIso cgrlim 48100   gPetersenGr cgpg 48164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-ico 13253  df-fz 13410  df-fzo 13557  df-fl 13698  df-ceil 13699  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-edgf 28969  df-vtx 28978  df-iedg 28979  df-edg 29028  df-uhgr 29038  df-ushgr 29039  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-subgr 29248  df-nbgr 29313  df-clnbgr 47943  df-isubgr 47985  df-grim 48002  df-gric 48005  df-stgr 48076  df-grlim 48102  df-gpg 48165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator