Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimedgnedg Structured version   Visualization version   GIF version

Theorem grlimedgnedg 48161
Description: In general, the image of an edge of a graph by a local isomprphism is not an edge of the other graph, proven by an example (see gpg5edgnedg 48160). This theorem proves that the analogon (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) 𝐾𝐼)) → (𝐹𝐾) ∈ 𝐸) of grimedgi 47966 for ordinarily isomorphic graphs does not hold in general. (Contributed by AV, 30-Dec-2025.)
Assertion
Ref Expression
grlimedgnedg 𝑔 ∈ USGraph ∃ ∈ USGraph ∃𝑓 ∈ (𝑔 GraphLocIso )∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))
Distinct variable group:   𝑎,𝑏,𝑓,𝑔,

Proof of Theorem grlimedgnedg
StepHypRef Expression
1 oveq1 7353 . . . 4 (𝑔 = (5 gPetersenGr 1) → (𝑔 GraphLocIso ) = ((5 gPetersenGr 1) GraphLocIso ))
2 fveq2 6822 . . . . 5 (𝑔 = (5 gPetersenGr 1) → (Vtx‘𝑔) = (Vtx‘(5 gPetersenGr 1)))
3 fveq2 6822 . . . . . . . 8 (𝑔 = (5 gPetersenGr 1) → (Edg‘𝑔) = (Edg‘(5 gPetersenGr 1)))
43eleq2d 2817 . . . . . . 7 (𝑔 = (5 gPetersenGr 1) → ({𝑎, 𝑏} ∈ (Edg‘𝑔) ↔ {𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1))))
54anbi1d 631 . . . . . 6 (𝑔 = (5 gPetersenGr 1) → (({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))))
62, 5rexeqbidv 3313 . . . . 5 (𝑔 = (5 gPetersenGr 1) → (∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))))
72, 6rexeqbidv 3313 . . . 4 (𝑔 = (5 gPetersenGr 1) → (∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))))
81, 7rexeqbidv 3313 . . 3 (𝑔 = (5 gPetersenGr 1) → (∃𝑓 ∈ (𝑔 GraphLocIso )∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ∃𝑓 ∈ ((5 gPetersenGr 1) GraphLocIso )∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))))
9 oveq2 7354 . . . 4 ( = (5 gPetersenGr 2) → ((5 gPetersenGr 1) GraphLocIso ) = ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2)))
10 eqidd 2732 . . . . . . 7 ( = (5 gPetersenGr 2) → {(𝑓𝑎), (𝑓𝑏)} = {(𝑓𝑎), (𝑓𝑏)})
11 fveq2 6822 . . . . . . 7 ( = (5 gPetersenGr 2) → (Edg‘) = (Edg‘(5 gPetersenGr 2)))
1210, 11neleq12d 3037 . . . . . 6 ( = (5 gPetersenGr 2) → ({(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘) ↔ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2))))
1312anbi2d 630 . . . . 5 ( = (5 gPetersenGr 2) → (({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))))
14132rexbidv 3197 . . . 4 ( = (5 gPetersenGr 2) → (∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))))
159, 14rexeqbidv 3313 . . 3 ( = (5 gPetersenGr 2) → (∃𝑓 ∈ ((5 gPetersenGr 1) GraphLocIso )∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)) ↔ ∃𝑓 ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2))∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))))
16 5eluz3 12778 . . . 4 5 ∈ (ℤ‘3)
17 gpgprismgrusgra 48088 . . . 4 (5 ∈ (ℤ‘3) → (5 gPetersenGr 1) ∈ USGraph)
1816, 17mp1i 13 . . 3 (⊤ → (5 gPetersenGr 1) ∈ USGraph)
19 pgjsgr 48122 . . . 4 (5 gPetersenGr 2) ∈ USGraph
2019a1i 11 . . 3 (⊤ → (5 gPetersenGr 2) ∈ USGraph)
21 fveq1 6821 . . . . . . 7 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → (𝑓𝑎) = (( I ↾ ({0, 1} × (0..^5)))‘𝑎))
22 fveq1 6821 . . . . . . 7 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → (𝑓𝑏) = (( I ↾ ({0, 1} × (0..^5)))‘𝑏))
2321, 22preq12d 4694 . . . . . 6 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → {(𝑓𝑎), (𝑓𝑏)} = {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)})
24 eqidd 2732 . . . . . 6 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → (Edg‘(5 gPetersenGr 2)) = (Edg‘(5 gPetersenGr 2)))
2523, 24neleq12d 3037 . . . . 5 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → ({(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2)) ↔ {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2))))
2625anbi2d 630 . . . 4 (𝑓 = ( I ↾ ({0, 1} × (0..^5))) → (({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2))) ↔ ({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))))
27 preq1 4686 . . . . . 6 (𝑎 = ⟨1, 0⟩ → {𝑎, 𝑏} = {⟨1, 0⟩, 𝑏})
2827eleq1d 2816 . . . . 5 (𝑎 = ⟨1, 0⟩ → ({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ↔ {⟨1, 0⟩, 𝑏} ∈ (Edg‘(5 gPetersenGr 1))))
29 fveq2 6822 . . . . . . 7 (𝑎 = ⟨1, 0⟩ → (( I ↾ ({0, 1} × (0..^5)))‘𝑎) = (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩))
3029preq1d 4692 . . . . . 6 (𝑎 = ⟨1, 0⟩ → {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} = {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)})
31 eqidd 2732 . . . . . 6 (𝑎 = ⟨1, 0⟩ → (Edg‘(5 gPetersenGr 2)) = (Edg‘(5 gPetersenGr 2)))
3230, 31neleq12d 3037 . . . . 5 (𝑎 = ⟨1, 0⟩ → ({(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2)) ↔ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2))))
3328, 32anbi12d 632 . . . 4 (𝑎 = ⟨1, 0⟩ → (({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2))) ↔ ({⟨1, 0⟩, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))))
34 preq2 4687 . . . . . 6 (𝑏 = ⟨1, 1⟩ → {⟨1, 0⟩, 𝑏} = {⟨1, 0⟩, ⟨1, 1⟩})
3534eleq1d 2816 . . . . 5 (𝑏 = ⟨1, 1⟩ → ({⟨1, 0⟩, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ↔ {⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1))))
36 fveq2 6822 . . . . . . 7 (𝑏 = ⟨1, 1⟩ → (( I ↾ ({0, 1} × (0..^5)))‘𝑏) = (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩))
3736preq2d 4693 . . . . . 6 (𝑏 = ⟨1, 1⟩ → {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} = {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)})
38 eqidd 2732 . . . . . 6 (𝑏 = ⟨1, 1⟩ → (Edg‘(5 gPetersenGr 2)) = (Edg‘(5 gPetersenGr 2)))
3937, 38neleq12d 3037 . . . . 5 (𝑏 = ⟨1, 1⟩ → ({(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2)) ↔ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2))))
4035, 39anbi12d 632 . . . 4 (𝑏 = ⟨1, 1⟩ → (({⟨1, 0⟩, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2))) ↔ ({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2)))))
41 gpg5grlim 48123 . . . . 5 ( I ↾ ({0, 1} × (0..^5))) ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2))
4241a1i 11 . . . 4 (⊤ → ( I ↾ ({0, 1} × (0..^5))) ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2)))
43 1ex 11105 . . . . . . . 8 1 ∈ V
4443prid2 4716 . . . . . . 7 1 ∈ {0, 1}
45 5nn 12208 . . . . . . . 8 5 ∈ ℕ
46 lbfzo0 13596 . . . . . . . 8 (0 ∈ (0..^5) ↔ 5 ∈ ℕ)
4745, 46mpbir 231 . . . . . . 7 0 ∈ (0..^5)
4844, 47opelxpii 5654 . . . . . 6 ⟨1, 0⟩ ∈ ({0, 1} × (0..^5))
49 1elfzo1ceilhalf1 47367 . . . . . . . 8 (5 ∈ (ℤ‘3) → 1 ∈ (1..^(⌈‘(5 / 2))))
5016, 49ax-mp 5 . . . . . . 7 1 ∈ (1..^(⌈‘(5 / 2)))
51 eqid 2731 . . . . . . . 8 (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2)))
52 eqid 2731 . . . . . . . 8 (0..^5) = (0..^5)
5351, 52gpgvtx 48073 . . . . . . 7 ((5 ∈ ℕ ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) → (Vtx‘(5 gPetersenGr 1)) = ({0, 1} × (0..^5)))
5445, 50, 53mp2an 692 . . . . . 6 (Vtx‘(5 gPetersenGr 1)) = ({0, 1} × (0..^5))
5548, 54eleqtrri 2830 . . . . 5 ⟨1, 0⟩ ∈ (Vtx‘(5 gPetersenGr 1))
5655a1i 11 . . . 4 (⊤ → ⟨1, 0⟩ ∈ (Vtx‘(5 gPetersenGr 1)))
57 1nn0 12394 . . . . . . . 8 1 ∈ ℕ0
5845nnzi 12493 . . . . . . . 8 5 ∈ ℤ
59 1lt5 12297 . . . . . . . 8 1 < 5
60 elfzo0z 13598 . . . . . . . 8 (1 ∈ (0..^5) ↔ (1 ∈ ℕ0 ∧ 5 ∈ ℤ ∧ 1 < 5))
6157, 58, 59, 60mpbir3an 1342 . . . . . . 7 1 ∈ (0..^5)
6244, 61opelxpii 5654 . . . . . 6 ⟨1, 1⟩ ∈ ({0, 1} × (0..^5))
6362, 54eleqtrri 2830 . . . . 5 ⟨1, 1⟩ ∈ (Vtx‘(5 gPetersenGr 1))
6463a1i 11 . . . 4 (⊤ → ⟨1, 1⟩ ∈ (Vtx‘(5 gPetersenGr 1)))
65 gpg5edgnedg 48160 . . . . . 6 ({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {⟨1, 0⟩, ⟨1, 1⟩} ∉ (Edg‘(5 gPetersenGr 2)))
66 fvresi 7107 . . . . . . . . . 10 (⟨1, 0⟩ ∈ ({0, 1} × (0..^5)) → (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩) = ⟨1, 0⟩)
6748, 66ax-mp 5 . . . . . . . . 9 (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩) = ⟨1, 0⟩
68 fvresi 7107 . . . . . . . . . 10 (⟨1, 1⟩ ∈ ({0, 1} × (0..^5)) → (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩) = ⟨1, 1⟩)
6962, 68ax-mp 5 . . . . . . . . 9 (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩) = ⟨1, 1⟩
7067, 69preq12i 4691 . . . . . . . 8 {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} = {⟨1, 0⟩, ⟨1, 1⟩}
71 neleq1 3038 . . . . . . . 8 ({(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} = {⟨1, 0⟩, ⟨1, 1⟩} → ({(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2)) ↔ {⟨1, 0⟩, ⟨1, 1⟩} ∉ (Edg‘(5 gPetersenGr 2))))
7270, 71ax-mp 5 . . . . . . 7 ({(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2)) ↔ {⟨1, 0⟩, ⟨1, 1⟩} ∉ (Edg‘(5 gPetersenGr 2)))
7372anbi2i 623 . . . . . 6 (({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2))) ↔ ({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {⟨1, 0⟩, ⟨1, 1⟩} ∉ (Edg‘(5 gPetersenGr 2))))
7465, 73mpbir 231 . . . . 5 ({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2)))
7574a1i 11 . . . 4 (⊤ → ({⟨1, 0⟩, ⟨1, 1⟩} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘⟨1, 0⟩), (( I ↾ ({0, 1} × (0..^5)))‘⟨1, 1⟩)} ∉ (Edg‘(5 gPetersenGr 2))))
7626, 33, 40, 42, 56, 64, 753rspcedvdw 3595 . . 3 (⊤ → ∃𝑓 ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2))∃𝑎 ∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘(5 gPetersenGr 2))))
778, 15, 18, 20, 762rspcedvdw 3591 . 2 (⊤ → ∃𝑔 ∈ USGraph ∃ ∈ USGraph ∃𝑓 ∈ (𝑔 GraphLocIso )∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘)))
7877mptru 1548 1 𝑔 ∈ USGraph ∃ ∈ USGraph ∃𝑓 ∈ (𝑔 GraphLocIso )∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓𝑎), (𝑓𝑏)} ∉ (Edg‘))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  wnel 3032  wrex 3056  {cpr 4578  cop 4582   class class class wbr 5091   I cid 5510   × cxp 5614  cres 5618  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004   < clt 11143   / cdiv 11771  cn 12122  2c2 12177  3c3 12178  5c5 12180  0cn0 12378  cz 12465  cuz 12729  ..^cfzo 13551  cceil 13692  Vtxcvtx 28972  Edgcedg 29023  USGraphcusgr 29125   GraphLocIso cgrlim 48006   gPetersenGr cgpg 48070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-xnn0 12452  df-z 12466  df-dec 12586  df-uz 12730  df-rp 12888  df-ico 13248  df-fz 13405  df-fzo 13552  df-fl 13693  df-ceil 13694  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-edgf 28965  df-vtx 28974  df-iedg 28975  df-edg 29024  df-uhgr 29034  df-ushgr 29035  df-upgr 29058  df-umgr 29059  df-uspgr 29126  df-usgr 29127  df-subgr 29244  df-nbgr 29309  df-clnbgr 47849  df-isubgr 47891  df-grim 47908  df-gric 47911  df-stgr 47982  df-grlim 48008  df-gpg 48071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator