Proof of Theorem grlimedgnedg
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7360 |
. . . 4
⊢ (𝑔 = (5 gPetersenGr 1) →
(𝑔 GraphLocIso ℎ) = ((5 gPetersenGr 1)
GraphLocIso ℎ)) |
| 2 | | fveq2 6826 |
. . . . 5
⊢ (𝑔 = (5 gPetersenGr 1) →
(Vtx‘𝑔) =
(Vtx‘(5 gPetersenGr 1))) |
| 3 | | fveq2 6826 |
. . . . . . . 8
⊢ (𝑔 = (5 gPetersenGr 1) →
(Edg‘𝑔) =
(Edg‘(5 gPetersenGr 1))) |
| 4 | 3 | eleq2d 2814 |
. . . . . . 7
⊢ (𝑔 = (5 gPetersenGr 1) →
({𝑎, 𝑏} ∈ (Edg‘𝑔) ↔ {𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr
1)))) |
| 5 | 4 | anbi1d 631 |
. . . . . 6
⊢ (𝑔 = (5 gPetersenGr 1) →
(({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)) ↔ ({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)))) |
| 6 | 2, 5 | rexeqbidv 3311 |
. . . . 5
⊢ (𝑔 = (5 gPetersenGr 1) →
(∃𝑏 ∈
(Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)) ↔ ∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)))) |
| 7 | 2, 6 | rexeqbidv 3311 |
. . . 4
⊢ (𝑔 = (5 gPetersenGr 1) →
(∃𝑎 ∈
(Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)) ↔ ∃𝑎 ∈ (Vtx‘(5 gPetersenGr
1))∃𝑏 ∈
(Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)))) |
| 8 | 1, 7 | rexeqbidv 3311 |
. . 3
⊢ (𝑔 = (5 gPetersenGr 1) →
(∃𝑓 ∈ (𝑔 GraphLocIso ℎ)∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)) ↔ ∃𝑓 ∈ ((5 gPetersenGr 1) GraphLocIso ℎ)∃𝑎 ∈ (Vtx‘(5 gPetersenGr
1))∃𝑏 ∈
(Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)))) |
| 9 | | oveq2 7361 |
. . . 4
⊢ (ℎ = (5 gPetersenGr 2) → ((5
gPetersenGr 1) GraphLocIso ℎ) = ((5 gPetersenGr 1) GraphLocIso (5
gPetersenGr 2))) |
| 10 | | eqidd 2730 |
. . . . . . 7
⊢ (ℎ = (5 gPetersenGr 2) →
{(𝑓‘𝑎), (𝑓‘𝑏)} = {(𝑓‘𝑎), (𝑓‘𝑏)}) |
| 11 | | fveq2 6826 |
. . . . . . 7
⊢ (ℎ = (5 gPetersenGr 2) →
(Edg‘ℎ) =
(Edg‘(5 gPetersenGr 2))) |
| 12 | 10, 11 | neleq12d 3034 |
. . . . . 6
⊢ (ℎ = (5 gPetersenGr 2) →
({(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ) ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘(5 gPetersenGr
2)))) |
| 13 | 12 | anbi2d 630 |
. . . . 5
⊢ (ℎ = (5 gPetersenGr 2) →
(({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)) ↔ ({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘(5 gPetersenGr
2))))) |
| 14 | 13 | 2rexbidv 3194 |
. . . 4
⊢ (ℎ = (5 gPetersenGr 2) →
(∃𝑎 ∈
(Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)) ↔ ∃𝑎 ∈ (Vtx‘(5 gPetersenGr
1))∃𝑏 ∈
(Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘(5 gPetersenGr
2))))) |
| 15 | 9, 14 | rexeqbidv 3311 |
. . 3
⊢ (ℎ = (5 gPetersenGr 2) →
(∃𝑓 ∈ ((5
gPetersenGr 1) GraphLocIso ℎ)∃𝑎 ∈ (Vtx‘(5 gPetersenGr
1))∃𝑏 ∈
(Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)) ↔ ∃𝑓 ∈ ((5 gPetersenGr 1) GraphLocIso (5
gPetersenGr 2))∃𝑎
∈ (Vtx‘(5 gPetersenGr 1))∃𝑏 ∈ (Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘(5 gPetersenGr
2))))) |
| 16 | | 5eluz3 12802 |
. . . 4
⊢ 5 ∈
(ℤ≥‘3) |
| 17 | | gpgprismgrusgra 48043 |
. . . 4
⊢ (5 ∈
(ℤ≥‘3) → (5 gPetersenGr 1) ∈
USGraph) |
| 18 | 16, 17 | mp1i 13 |
. . 3
⊢ (⊤
→ (5 gPetersenGr 1) ∈ USGraph) |
| 19 | | pgjsgr 48077 |
. . . 4
⊢ (5
gPetersenGr 2) ∈ USGraph |
| 20 | 19 | a1i 11 |
. . 3
⊢ (⊤
→ (5 gPetersenGr 2) ∈ USGraph) |
| 21 | | fveq1 6825 |
. . . . . . 7
⊢ (𝑓 = ( I ↾ ({0, 1} ×
(0..^5))) → (𝑓‘𝑎) = (( I ↾ ({0, 1} ×
(0..^5)))‘𝑎)) |
| 22 | | fveq1 6825 |
. . . . . . 7
⊢ (𝑓 = ( I ↾ ({0, 1} ×
(0..^5))) → (𝑓‘𝑏) = (( I ↾ ({0, 1} ×
(0..^5)))‘𝑏)) |
| 23 | 21, 22 | preq12d 4695 |
. . . . . 6
⊢ (𝑓 = ( I ↾ ({0, 1} ×
(0..^5))) → {(𝑓‘𝑎), (𝑓‘𝑏)} = {(( I ↾ ({0, 1} ×
(0..^5)))‘𝑎), (( I
↾ ({0, 1} × (0..^5)))‘𝑏)}) |
| 24 | | eqidd 2730 |
. . . . . 6
⊢ (𝑓 = ( I ↾ ({0, 1} ×
(0..^5))) → (Edg‘(5 gPetersenGr 2)) = (Edg‘(5 gPetersenGr
2))) |
| 25 | 23, 24 | neleq12d 3034 |
. . . . 5
⊢ (𝑓 = ( I ↾ ({0, 1} ×
(0..^5))) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2))
↔ {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} ×
(0..^5)))‘𝑏)} ∉
(Edg‘(5 gPetersenGr 2)))) |
| 26 | 25 | anbi2d 630 |
. . . 4
⊢ (𝑓 = ( I ↾ ({0, 1} ×
(0..^5))) → (({𝑎,
𝑏} ∈ (Edg‘(5
gPetersenGr 1)) ∧ {(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2)))
↔ ({𝑎, 𝑏} ∈ (Edg‘(5
gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} ×
(0..^5)))‘𝑏)} ∉
(Edg‘(5 gPetersenGr 2))))) |
| 27 | | preq1 4687 |
. . . . . 6
⊢ (𝑎 = 〈1, 0〉 →
{𝑎, 𝑏} = {〈1, 0〉, 𝑏}) |
| 28 | 27 | eleq1d 2813 |
. . . . 5
⊢ (𝑎 = 〈1, 0〉 →
({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ↔
{〈1, 0〉, 𝑏}
∈ (Edg‘(5 gPetersenGr 1)))) |
| 29 | | fveq2 6826 |
. . . . . . 7
⊢ (𝑎 = 〈1, 0〉 → (( I
↾ ({0, 1} × (0..^5)))‘𝑎) = (( I ↾ ({0, 1} ×
(0..^5)))‘〈1, 0〉)) |
| 30 | 29 | preq1d 4693 |
. . . . . 6
⊢ (𝑎 = 〈1, 0〉 → {(( I
↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} ×
(0..^5)))‘𝑏)} = {(( I
↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I ↾ ({0, 1}
× (0..^5)))‘𝑏)}) |
| 31 | | eqidd 2730 |
. . . . . 6
⊢ (𝑎 = 〈1, 0〉 →
(Edg‘(5 gPetersenGr 2)) = (Edg‘(5 gPetersenGr 2))) |
| 32 | 30, 31 | neleq12d 3034 |
. . . . 5
⊢ (𝑎 = 〈1, 0〉 → ({((
I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} ×
(0..^5)))‘𝑏)} ∉
(Edg‘(5 gPetersenGr 2)) ↔ {(( I ↾ ({0, 1} ×
(0..^5)))‘〈1, 0〉), (( I ↾ ({0, 1} ×
(0..^5)))‘𝑏)} ∉
(Edg‘(5 gPetersenGr 2)))) |
| 33 | 28, 32 | anbi12d 632 |
. . . 4
⊢ (𝑎 = 〈1, 0〉 →
(({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(( I ↾ ({0, 1} × (0..^5)))‘𝑎), (( I ↾ ({0, 1} ×
(0..^5)))‘𝑏)} ∉
(Edg‘(5 gPetersenGr 2))) ↔ ({〈1, 0〉, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(( I ↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I ↾
({0, 1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr
2))))) |
| 34 | | preq2 4688 |
. . . . . 6
⊢ (𝑏 = 〈1, 1〉 →
{〈1, 0〉, 𝑏} =
{〈1, 0〉, 〈1, 1〉}) |
| 35 | 34 | eleq1d 2813 |
. . . . 5
⊢ (𝑏 = 〈1, 1〉 →
({〈1, 0〉, 𝑏}
∈ (Edg‘(5 gPetersenGr 1)) ↔ {〈1, 0〉, 〈1,
1〉} ∈ (Edg‘(5 gPetersenGr 1)))) |
| 36 | | fveq2 6826 |
. . . . . . 7
⊢ (𝑏 = 〈1, 1〉 → (( I
↾ ({0, 1} × (0..^5)))‘𝑏) = (( I ↾ ({0, 1} ×
(0..^5)))‘〈1, 1〉)) |
| 37 | 36 | preq2d 4694 |
. . . . . 6
⊢ (𝑏 = 〈1, 1〉 → {(( I
↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I ↾ ({0, 1}
× (0..^5)))‘𝑏)}
= {(( I ↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I ↾
({0, 1} × (0..^5)))‘〈1, 1〉)}) |
| 38 | | eqidd 2730 |
. . . . . 6
⊢ (𝑏 = 〈1, 1〉 →
(Edg‘(5 gPetersenGr 2)) = (Edg‘(5 gPetersenGr 2))) |
| 39 | 37, 38 | neleq12d 3034 |
. . . . 5
⊢ (𝑏 = 〈1, 1〉 → ({((
I ↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I ↾ ({0,
1} × (0..^5)))‘𝑏)} ∉ (Edg‘(5 gPetersenGr 2))
↔ {(( I ↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I
↾ ({0, 1} × (0..^5)))‘〈1, 1〉)} ∉
(Edg‘(5 gPetersenGr 2)))) |
| 40 | 35, 39 | anbi12d 632 |
. . . 4
⊢ (𝑏 = 〈1, 1〉 →
(({〈1, 0〉, 𝑏}
∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} ×
(0..^5)))‘〈1, 0〉), (( I ↾ ({0, 1} ×
(0..^5)))‘𝑏)} ∉
(Edg‘(5 gPetersenGr 2))) ↔ ({〈1, 0〉, 〈1, 1〉}
∈ (Edg‘(5 gPetersenGr 1)) ∧ {(( I ↾ ({0, 1} ×
(0..^5)))‘〈1, 0〉), (( I ↾ ({0, 1} ×
(0..^5)))‘〈1, 1〉)} ∉ (Edg‘(5 gPetersenGr
2))))) |
| 41 | | gpg5grlim 48078 |
. . . . 5
⊢ ( I
↾ ({0, 1} × (0..^5))) ∈ ((5 gPetersenGr 1) GraphLocIso (5
gPetersenGr 2)) |
| 42 | 41 | a1i 11 |
. . . 4
⊢ (⊤
→ ( I ↾ ({0, 1} × (0..^5))) ∈ ((5 gPetersenGr 1)
GraphLocIso (5 gPetersenGr 2))) |
| 43 | | 1ex 11130 |
. . . . . . . 8
⊢ 1 ∈
V |
| 44 | 43 | prid2 4717 |
. . . . . . 7
⊢ 1 ∈
{0, 1} |
| 45 | | 5nn 12232 |
. . . . . . . 8
⊢ 5 ∈
ℕ |
| 46 | | lbfzo0 13620 |
. . . . . . . 8
⊢ (0 ∈
(0..^5) ↔ 5 ∈ ℕ) |
| 47 | 45, 46 | mpbir 231 |
. . . . . . 7
⊢ 0 ∈
(0..^5) |
| 48 | 44, 47 | opelxpii 5661 |
. . . . . 6
⊢ 〈1,
0〉 ∈ ({0, 1} × (0..^5)) |
| 49 | | 1elfzo1ceilhalf1 47322 |
. . . . . . . 8
⊢ (5 ∈
(ℤ≥‘3) → 1 ∈ (1..^(⌈‘(5 /
2)))) |
| 50 | 16, 49 | ax-mp 5 |
. . . . . . 7
⊢ 1 ∈
(1..^(⌈‘(5 / 2))) |
| 51 | | eqid 2729 |
. . . . . . . 8
⊢
(1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 /
2))) |
| 52 | | eqid 2729 |
. . . . . . . 8
⊢ (0..^5) =
(0..^5) |
| 53 | 51, 52 | gpgvtx 48028 |
. . . . . . 7
⊢ ((5
∈ ℕ ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) →
(Vtx‘(5 gPetersenGr 1)) = ({0, 1} × (0..^5))) |
| 54 | 45, 50, 53 | mp2an 692 |
. . . . . 6
⊢
(Vtx‘(5 gPetersenGr 1)) = ({0, 1} ×
(0..^5)) |
| 55 | 48, 54 | eleqtrri 2827 |
. . . . 5
⊢ 〈1,
0〉 ∈ (Vtx‘(5 gPetersenGr 1)) |
| 56 | 55 | a1i 11 |
. . . 4
⊢ (⊤
→ 〈1, 0〉 ∈ (Vtx‘(5 gPetersenGr 1))) |
| 57 | | 1nn0 12418 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
| 58 | 45 | nnzi 12517 |
. . . . . . . 8
⊢ 5 ∈
ℤ |
| 59 | | 1lt5 12321 |
. . . . . . . 8
⊢ 1 <
5 |
| 60 | | elfzo0z 13622 |
. . . . . . . 8
⊢ (1 ∈
(0..^5) ↔ (1 ∈ ℕ0 ∧ 5 ∈ ℤ ∧ 1
< 5)) |
| 61 | 57, 58, 59, 60 | mpbir3an 1342 |
. . . . . . 7
⊢ 1 ∈
(0..^5) |
| 62 | 44, 61 | opelxpii 5661 |
. . . . . 6
⊢ 〈1,
1〉 ∈ ({0, 1} × (0..^5)) |
| 63 | 62, 54 | eleqtrri 2827 |
. . . . 5
⊢ 〈1,
1〉 ∈ (Vtx‘(5 gPetersenGr 1)) |
| 64 | 63 | a1i 11 |
. . . 4
⊢ (⊤
→ 〈1, 1〉 ∈ (Vtx‘(5 gPetersenGr 1))) |
| 65 | | gpg5edgnedg 48115 |
. . . . . 6
⊢
({〈1, 0〉, 〈1, 1〉} ∈ (Edg‘(5 gPetersenGr
1)) ∧ {〈1, 0〉, 〈1, 1〉} ∉ (Edg‘(5
gPetersenGr 2))) |
| 66 | | fvresi 7113 |
. . . . . . . . . 10
⊢ (〈1,
0〉 ∈ ({0, 1} × (0..^5)) → (( I ↾ ({0, 1} ×
(0..^5)))‘〈1, 0〉) = 〈1, 0〉) |
| 67 | 48, 66 | ax-mp 5 |
. . . . . . . . 9
⊢ (( I
↾ ({0, 1} × (0..^5)))‘〈1, 0〉) = 〈1,
0〉 |
| 68 | | fvresi 7113 |
. . . . . . . . . 10
⊢ (〈1,
1〉 ∈ ({0, 1} × (0..^5)) → (( I ↾ ({0, 1} ×
(0..^5)))‘〈1, 1〉) = 〈1, 1〉) |
| 69 | 62, 68 | ax-mp 5 |
. . . . . . . . 9
⊢ (( I
↾ ({0, 1} × (0..^5)))‘〈1, 1〉) = 〈1,
1〉 |
| 70 | 67, 69 | preq12i 4692 |
. . . . . . . 8
⊢ {(( I
↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I ↾ ({0, 1}
× (0..^5)))‘〈1, 1〉)} = {〈1, 0〉, 〈1,
1〉} |
| 71 | | neleq1 3035 |
. . . . . . . 8
⊢ ({(( I
↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I ↾ ({0, 1}
× (0..^5)))‘〈1, 1〉)} = {〈1, 0〉, 〈1,
1〉} → ({(( I ↾ ({0, 1} × (0..^5)))‘〈1,
0〉), (( I ↾ ({0, 1} × (0..^5)))‘〈1, 1〉)}
∉ (Edg‘(5 gPetersenGr 2)) ↔ {〈1, 0〉, 〈1,
1〉} ∉ (Edg‘(5 gPetersenGr 2)))) |
| 72 | 70, 71 | ax-mp 5 |
. . . . . . 7
⊢ ({(( I
↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I ↾ ({0, 1}
× (0..^5)))‘〈1, 1〉)} ∉ (Edg‘(5 gPetersenGr
2)) ↔ {〈1, 0〉, 〈1, 1〉} ∉ (Edg‘(5
gPetersenGr 2))) |
| 73 | 72 | anbi2i 623 |
. . . . . 6
⊢
(({〈1, 0〉, 〈1, 1〉} ∈ (Edg‘(5 gPetersenGr
1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I
↾ ({0, 1} × (0..^5)))‘〈1, 1〉)} ∉
(Edg‘(5 gPetersenGr 2))) ↔ ({〈1, 0〉, 〈1, 1〉}
∈ (Edg‘(5 gPetersenGr 1)) ∧ {〈1, 0〉, 〈1, 1〉}
∉ (Edg‘(5 gPetersenGr 2)))) |
| 74 | 65, 73 | mpbir 231 |
. . . . 5
⊢
({〈1, 0〉, 〈1, 1〉} ∈ (Edg‘(5 gPetersenGr
1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I
↾ ({0, 1} × (0..^5)))‘〈1, 1〉)} ∉
(Edg‘(5 gPetersenGr 2))) |
| 75 | 74 | a1i 11 |
. . . 4
⊢ (⊤
→ ({〈1, 0〉, 〈1, 1〉} ∈ (Edg‘(5 gPetersenGr
1)) ∧ {(( I ↾ ({0, 1} × (0..^5)))‘〈1, 0〉), (( I
↾ ({0, 1} × (0..^5)))‘〈1, 1〉)} ∉
(Edg‘(5 gPetersenGr 2)))) |
| 76 | 26, 33, 40, 42, 56, 64, 75 | 3rspcedvdw 3597 |
. . 3
⊢ (⊤
→ ∃𝑓 ∈ ((5
gPetersenGr 1) GraphLocIso (5 gPetersenGr 2))∃𝑎 ∈ (Vtx‘(5 gPetersenGr
1))∃𝑏 ∈
(Vtx‘(5 gPetersenGr 1))({𝑎, 𝑏} ∈ (Edg‘(5 gPetersenGr 1)) ∧
{(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘(5 gPetersenGr
2)))) |
| 77 | 8, 15, 18, 20, 76 | 2rspcedvdw 3593 |
. 2
⊢ (⊤
→ ∃𝑔 ∈
USGraph ∃ℎ ∈
USGraph ∃𝑓 ∈
(𝑔 GraphLocIso ℎ)∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ))) |
| 78 | 77 | mptru 1547 |
1
⊢
∃𝑔 ∈
USGraph ∃ℎ ∈
USGraph ∃𝑓 ∈
(𝑔 GraphLocIso ℎ)∃𝑎 ∈ (Vtx‘𝑔)∃𝑏 ∈ (Vtx‘𝑔)({𝑎, 𝑏} ∈ (Edg‘𝑔) ∧ {(𝑓‘𝑎), (𝑓‘𝑏)} ∉ (Edg‘ℎ)) |