MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmulid2 Structured version   Visualization version   GIF version

Theorem dchrmulid2 26305
Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchrmulid2.t · = (+g𝐺)
dchrmulid2.x (𝜑𝑋𝐷)
Assertion
Ref Expression
dchrmulid2 (𝜑 → ( 1 · 𝑋) = 𝑋)
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   · (𝑘)   1 (𝑘)   𝐺(𝑘)

Proof of Theorem dchrmulid2
StepHypRef Expression
1 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
4 dchrmulid2.t . . 3 · = (+g𝐺)
5 dchrn0.b . . . 4 𝐵 = (Base‘𝑍)
6 dchrn0.u . . . 4 𝑈 = (Unit‘𝑍)
7 dchr1cl.o . . . 4 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
8 dchrmulid2.x . . . . 5 (𝜑𝑋𝐷)
91, 3dchrrcl 26293 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
108, 9syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
111, 2, 3, 5, 6, 7, 10dchr1cl 26304 . . 3 (𝜑1𝐷)
121, 2, 3, 4, 11, 8dchrmul 26301 . 2 (𝜑 → ( 1 · 𝑋) = ( 1f · 𝑋))
13 oveq1 7262 . . . . . 6 (1 = if(𝑘𝑈, 1, 0) → (1 · (𝑋𝑘)) = (if(𝑘𝑈, 1, 0) · (𝑋𝑘)))
1413eqeq1d 2740 . . . . 5 (1 = if(𝑘𝑈, 1, 0) → ((1 · (𝑋𝑘)) = (𝑋𝑘) ↔ (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘)))
15 oveq1 7262 . . . . . 6 (0 = if(𝑘𝑈, 1, 0) → (0 · (𝑋𝑘)) = (if(𝑘𝑈, 1, 0) · (𝑋𝑘)))
1615eqeq1d 2740 . . . . 5 (0 = if(𝑘𝑈, 1, 0) → ((0 · (𝑋𝑘)) = (𝑋𝑘) ↔ (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘)))
171, 2, 3, 5, 8dchrf 26295 . . . . . . . 8 (𝜑𝑋:𝐵⟶ℂ)
1817ffvelrnda 6943 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
1918adantr 480 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
2019mulid2d 10924 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (1 · (𝑋𝑘)) = (𝑋𝑘))
21 0cn 10898 . . . . . . 7 0 ∈ ℂ
2221mul02i 11094 . . . . . 6 (0 · 0) = 0
231, 2, 5, 6, 10, 3dchrelbas2 26290 . . . . . . . . . . . 12 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈))))
248, 23mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈)))
2524simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2625r19.21bi 3132 . . . . . . . . 9 ((𝜑𝑘𝐵) → ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2726necon1bd 2960 . . . . . . . 8 ((𝜑𝑘𝐵) → (¬ 𝑘𝑈 → (𝑋𝑘) = 0))
2827imp 406 . . . . . . 7 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (𝑋𝑘) = 0)
2928oveq2d 7271 . . . . . 6 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (0 · (𝑋𝑘)) = (0 · 0))
3022, 29, 283eqtr4a 2805 . . . . 5 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (0 · (𝑋𝑘)) = (𝑋𝑘))
3114, 16, 20, 30ifbothda 4494 . . . 4 ((𝜑𝑘𝐵) → (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘))
3231mpteq2dva 5170 . . 3 (𝜑 → (𝑘𝐵 ↦ (if(𝑘𝑈, 1, 0) · (𝑋𝑘))) = (𝑘𝐵 ↦ (𝑋𝑘)))
335fvexi 6770 . . . . 5 𝐵 ∈ V
3433a1i 11 . . . 4 (𝜑𝐵 ∈ V)
35 ax-1cn 10860 . . . . . 6 1 ∈ ℂ
3635, 21ifcli 4503 . . . . 5 if(𝑘𝑈, 1, 0) ∈ ℂ
3736a1i 11 . . . 4 ((𝜑𝑘𝐵) → if(𝑘𝑈, 1, 0) ∈ ℂ)
387a1i 11 . . . 4 (𝜑1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)))
3917feqmptd 6819 . . . 4 (𝜑𝑋 = (𝑘𝐵 ↦ (𝑋𝑘)))
4034, 37, 18, 38, 39offval2 7531 . . 3 (𝜑 → ( 1f · 𝑋) = (𝑘𝐵 ↦ (if(𝑘𝑈, 1, 0) · (𝑋𝑘))))
4132, 40, 393eqtr4d 2788 . 2 (𝜑 → ( 1f · 𝑋) = 𝑋)
4212, 41eqtrd 2778 1 (𝜑 → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  ifcif 4456  cmpt 5153  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  0cc0 10802  1c1 10803   · cmul 10807  cn 11903  Basecbs 16840  +gcplusg 16888   MndHom cmhm 18343  mulGrpcmgp 19635  Unitcui 19796  fldccnfld 20510  ℤ/nczn 20616  DChrcdchr 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-nsg 18668  df-eqg 18669  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-cnfld 20511  df-zring 20583  df-zn 20620  df-dchr 26286
This theorem is referenced by:  dchrabl  26307  dchr1  26310
  Copyright terms: Public domain W3C validator