Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrmulid2 | Structured version Visualization version GIF version |
Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrn0.b | ⊢ 𝐵 = (Base‘𝑍) |
dchrn0.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchr1cl.o | ⊢ 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0)) |
dchrmulid2.t | ⊢ · = (+g‘𝐺) |
dchrmulid2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
dchrmulid2 | ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrmhm.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrmhm.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchrmhm.b | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
4 | dchrmulid2.t | . . 3 ⊢ · = (+g‘𝐺) | |
5 | dchrn0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑍) | |
6 | dchrn0.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑍) | |
7 | dchr1cl.o | . . . 4 ⊢ 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0)) | |
8 | dchrmulid2.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
9 | 1, 3 | dchrrcl 26121 | . . . . 5 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
11 | 1, 2, 3, 5, 6, 7, 10 | dchr1cl 26132 | . . 3 ⊢ (𝜑 → 1 ∈ 𝐷) |
12 | 1, 2, 3, 4, 11, 8 | dchrmul 26129 | . 2 ⊢ (𝜑 → ( 1 · 𝑋) = ( 1 ∘f · 𝑋)) |
13 | oveq1 7220 | . . . . . 6 ⊢ (1 = if(𝑘 ∈ 𝑈, 1, 0) → (1 · (𝑋‘𝑘)) = (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘))) | |
14 | 13 | eqeq1d 2739 | . . . . 5 ⊢ (1 = if(𝑘 ∈ 𝑈, 1, 0) → ((1 · (𝑋‘𝑘)) = (𝑋‘𝑘) ↔ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)) = (𝑋‘𝑘))) |
15 | oveq1 7220 | . . . . . 6 ⊢ (0 = if(𝑘 ∈ 𝑈, 1, 0) → (0 · (𝑋‘𝑘)) = (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘))) | |
16 | 15 | eqeq1d 2739 | . . . . 5 ⊢ (0 = if(𝑘 ∈ 𝑈, 1, 0) → ((0 · (𝑋‘𝑘)) = (𝑋‘𝑘) ↔ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)) = (𝑋‘𝑘))) |
17 | 1, 2, 3, 5, 8 | dchrf 26123 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:𝐵⟶ℂ) |
18 | 17 | ffvelrnda 6904 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑋‘𝑘) ∈ ℂ) |
19 | 18 | adantr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → (𝑋‘𝑘) ∈ ℂ) |
20 | 19 | mulid2d 10851 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → (1 · (𝑋‘𝑘)) = (𝑋‘𝑘)) |
21 | 0cn 10825 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
22 | 21 | mul02i 11021 | . . . . . 6 ⊢ (0 · 0) = 0 |
23 | 1, 2, 5, 6, 10, 3 | dchrelbas2 26118 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘 ∈ 𝐵 ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)))) |
24 | 8, 23 | mpbid 235 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘 ∈ 𝐵 ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈))) |
25 | 24 | simprd 499 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑘 ∈ 𝐵 ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
26 | 25 | r19.21bi 3130 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
27 | 26 | necon1bd 2958 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝑈 → (𝑋‘𝑘) = 0)) |
28 | 27 | imp 410 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → (𝑋‘𝑘) = 0) |
29 | 28 | oveq2d 7229 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → (0 · (𝑋‘𝑘)) = (0 · 0)) |
30 | 22, 29, 28 | 3eqtr4a 2804 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → (0 · (𝑋‘𝑘)) = (𝑋‘𝑘)) |
31 | 14, 16, 20, 30 | ifbothda 4477 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)) = (𝑋‘𝑘)) |
32 | 31 | mpteq2dva 5150 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘))) = (𝑘 ∈ 𝐵 ↦ (𝑋‘𝑘))) |
33 | 5 | fvexi 6731 | . . . . 5 ⊢ 𝐵 ∈ V |
34 | 33 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
35 | ax-1cn 10787 | . . . . . 6 ⊢ 1 ∈ ℂ | |
36 | 35, 21 | ifcli 4486 | . . . . 5 ⊢ if(𝑘 ∈ 𝑈, 1, 0) ∈ ℂ |
37 | 36 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝑈, 1, 0) ∈ ℂ) |
38 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
39 | 17 | feqmptd 6780 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑘 ∈ 𝐵 ↦ (𝑋‘𝑘))) |
40 | 34, 37, 18, 38, 39 | offval2 7488 | . . 3 ⊢ (𝜑 → ( 1 ∘f · 𝑋) = (𝑘 ∈ 𝐵 ↦ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)))) |
41 | 32, 40, 39 | 3eqtr4d 2787 | . 2 ⊢ (𝜑 → ( 1 ∘f · 𝑋) = 𝑋) |
42 | 12, 41 | eqtrd 2777 | 1 ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 Vcvv 3408 ifcif 4439 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 ∘f cof 7467 ℂcc 10727 0cc0 10729 1c1 10730 · cmul 10734 ℕcn 11830 Basecbs 16760 +gcplusg 16802 MndHom cmhm 18216 mulGrpcmgp 19504 Unitcui 19657 ℂfldccnfld 20363 ℤ/nℤczn 20469 DChrcdchr 26113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-ec 8393 df-qs 8397 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-0g 16946 df-imas 17013 df-qus 17014 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-nsg 18541 df-eqg 18542 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-subrg 19798 df-lmod 19901 df-lss 19969 df-lsp 20009 df-sra 20209 df-rgmod 20210 df-lidl 20211 df-rsp 20212 df-2idl 20270 df-cnfld 20364 df-zring 20436 df-zn 20473 df-dchr 26114 |
This theorem is referenced by: dchrabl 26135 dchr1 26138 |
Copyright terms: Public domain | W3C validator |