MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmulid2 Structured version   Visualization version   GIF version

Theorem dchrmulid2 26600
Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchrmulid2.t · = (+g𝐺)
dchrmulid2.x (𝜑𝑋𝐷)
Assertion
Ref Expression
dchrmulid2 (𝜑 → ( 1 · 𝑋) = 𝑋)
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   · (𝑘)   1 (𝑘)   𝐺(𝑘)

Proof of Theorem dchrmulid2
StepHypRef Expression
1 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
4 dchrmulid2.t . . 3 · = (+g𝐺)
5 dchrn0.b . . . 4 𝐵 = (Base‘𝑍)
6 dchrn0.u . . . 4 𝑈 = (Unit‘𝑍)
7 dchr1cl.o . . . 4 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
8 dchrmulid2.x . . . . 5 (𝜑𝑋𝐷)
91, 3dchrrcl 26588 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
108, 9syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
111, 2, 3, 5, 6, 7, 10dchr1cl 26599 . . 3 (𝜑1𝐷)
121, 2, 3, 4, 11, 8dchrmul 26596 . 2 (𝜑 → ( 1 · 𝑋) = ( 1f · 𝑋))
13 oveq1 7364 . . . . . 6 (1 = if(𝑘𝑈, 1, 0) → (1 · (𝑋𝑘)) = (if(𝑘𝑈, 1, 0) · (𝑋𝑘)))
1413eqeq1d 2738 . . . . 5 (1 = if(𝑘𝑈, 1, 0) → ((1 · (𝑋𝑘)) = (𝑋𝑘) ↔ (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘)))
15 oveq1 7364 . . . . . 6 (0 = if(𝑘𝑈, 1, 0) → (0 · (𝑋𝑘)) = (if(𝑘𝑈, 1, 0) · (𝑋𝑘)))
1615eqeq1d 2738 . . . . 5 (0 = if(𝑘𝑈, 1, 0) → ((0 · (𝑋𝑘)) = (𝑋𝑘) ↔ (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘)))
171, 2, 3, 5, 8dchrf 26590 . . . . . . . 8 (𝜑𝑋:𝐵⟶ℂ)
1817ffvelcdmda 7035 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
1918adantr 481 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
2019mulid2d 11173 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (1 · (𝑋𝑘)) = (𝑋𝑘))
21 0cn 11147 . . . . . . 7 0 ∈ ℂ
2221mul02i 11344 . . . . . 6 (0 · 0) = 0
231, 2, 5, 6, 10, 3dchrelbas2 26585 . . . . . . . . . . . 12 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈))))
248, 23mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈)))
2524simprd 496 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2625r19.21bi 3234 . . . . . . . . 9 ((𝜑𝑘𝐵) → ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2726necon1bd 2961 . . . . . . . 8 ((𝜑𝑘𝐵) → (¬ 𝑘𝑈 → (𝑋𝑘) = 0))
2827imp 407 . . . . . . 7 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (𝑋𝑘) = 0)
2928oveq2d 7373 . . . . . 6 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (0 · (𝑋𝑘)) = (0 · 0))
3022, 29, 283eqtr4a 2802 . . . . 5 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (0 · (𝑋𝑘)) = (𝑋𝑘))
3114, 16, 20, 30ifbothda 4524 . . . 4 ((𝜑𝑘𝐵) → (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘))
3231mpteq2dva 5205 . . 3 (𝜑 → (𝑘𝐵 ↦ (if(𝑘𝑈, 1, 0) · (𝑋𝑘))) = (𝑘𝐵 ↦ (𝑋𝑘)))
335fvexi 6856 . . . . 5 𝐵 ∈ V
3433a1i 11 . . . 4 (𝜑𝐵 ∈ V)
35 ax-1cn 11109 . . . . . 6 1 ∈ ℂ
3635, 21ifcli 4533 . . . . 5 if(𝑘𝑈, 1, 0) ∈ ℂ
3736a1i 11 . . . 4 ((𝜑𝑘𝐵) → if(𝑘𝑈, 1, 0) ∈ ℂ)
387a1i 11 . . . 4 (𝜑1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)))
3917feqmptd 6910 . . . 4 (𝜑𝑋 = (𝑘𝐵 ↦ (𝑋𝑘)))
4034, 37, 18, 38, 39offval2 7637 . . 3 (𝜑 → ( 1f · 𝑋) = (𝑘𝐵 ↦ (if(𝑘𝑈, 1, 0) · (𝑋𝑘))))
4132, 40, 393eqtr4d 2786 . 2 (𝜑 → ( 1f · 𝑋) = 𝑋)
4212, 41eqtrd 2776 1 (𝜑 → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  Vcvv 3445  ifcif 4486  cmpt 5188  cfv 6496  (class class class)co 7357  f cof 7615  cc 11049  0cc0 11051  1c1 11052   · cmul 11056  cn 12153  Basecbs 17083  +gcplusg 17133   MndHom cmhm 18599  mulGrpcmgp 19896  Unitcui 20068  fldccnfld 20796  ℤ/nczn 20903  DChrcdchr 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-imas 17390  df-qus 17391  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-nsg 18926  df-eqg 18927  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-cnfld 20797  df-zring 20870  df-zn 20907  df-dchr 26581
This theorem is referenced by:  dchrabl  26602  dchr1  26605
  Copyright terms: Public domain W3C validator