Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dih0sb | Structured version Visualization version GIF version |
Description: A subspace is zero iff the converse of its isomorphism is lattice zero. (Contributed by NM, 17-Aug-2014.) |
Ref | Expression |
---|---|
dih0sb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dih0sb.o | ⊢ 0 = (0.‘𝐾) |
dih0sb.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dih0sb.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dih0sb.v | ⊢ 𝑉 = (Base‘𝑈) |
dih0sb.z | ⊢ 𝑍 = (0g‘𝑈) |
dih0sb.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dih0sb.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dih0sb.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
Ref | Expression |
---|---|
dih0sb | ⊢ (𝜑 → (𝑋 = {𝑍} ↔ (◡𝐼‘𝑋) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dih0sb.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dih0sb.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
3 | dih0sb.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | dih0sb.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
5 | dih0sb.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | dih0sb.z | . . . . 5 ⊢ 𝑍 = (0g‘𝑈) | |
7 | 1, 2, 5, 6 | dih0rn 38894 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑍} ∈ ran 𝐼) |
8 | 3, 7 | syl 17 | . . 3 ⊢ (𝜑 → {𝑍} ∈ ran 𝐼) |
9 | 1, 2, 3, 4, 8 | dihcnv11 38885 | . 2 ⊢ (𝜑 → ((◡𝐼‘𝑋) = (◡𝐼‘{𝑍}) ↔ 𝑋 = {𝑍})) |
10 | dih0sb.o | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
11 | 1, 10, 2, 5, 6 | dih0cnv 38893 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐼‘{𝑍}) = 0 ) |
12 | 3, 11 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐼‘{𝑍}) = 0 ) |
13 | 12 | eqeq2d 2769 | . 2 ⊢ (𝜑 → ((◡𝐼‘𝑋) = (◡𝐼‘{𝑍}) ↔ (◡𝐼‘𝑋) = 0 )) |
14 | 9, 13 | bitr3d 284 | 1 ⊢ (𝜑 → (𝑋 = {𝑍} ↔ (◡𝐼‘𝑋) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {csn 4525 ◡ccnv 5527 ran crn 5529 ‘cfv 6340 Basecbs 16554 0gc0g 16784 0.cp0 17726 LSpanclspn 19824 HLchlt 36960 LHypclh 37594 DVecHcdvh 38688 DIsoHcdih 38838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-riotaBAD 36563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-tpos 7908 df-undef 7955 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-sca 16652 df-vsca 16653 df-0g 16786 df-proset 17617 df-poset 17635 df-plt 17647 df-lub 17663 df-glb 17664 df-join 17665 df-meet 17666 df-p0 17728 df-p1 17729 df-lat 17735 df-clat 17797 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-submnd 18036 df-grp 18185 df-minusg 18186 df-sbg 18187 df-subg 18356 df-cntz 18527 df-lsm 18841 df-cmn 18988 df-abl 18989 df-mgp 19321 df-ur 19333 df-ring 19380 df-oppr 19457 df-dvdsr 19475 df-unit 19476 df-invr 19506 df-dvr 19517 df-drng 19585 df-lmod 19717 df-lss 19785 df-lsp 19825 df-lvec 19956 df-oposet 36786 df-ol 36788 df-oml 36789 df-covers 36876 df-ats 36877 df-atl 36908 df-cvlat 36932 df-hlat 36961 df-llines 37108 df-lplanes 37109 df-lvols 37110 df-lines 37111 df-psubsp 37113 df-pmap 37114 df-padd 37406 df-lhyp 37598 df-laut 37599 df-ldil 37714 df-ltrn 37715 df-trl 37769 df-tendo 38365 df-edring 38367 df-disoa 38639 df-dvech 38689 df-dib 38749 df-dic 38783 df-dih 38839 |
This theorem is referenced by: djhcvat42 39025 |
Copyright terms: Public domain | W3C validator |