| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dih0sb | Structured version Visualization version GIF version | ||
| Description: A subspace is zero iff the converse of its isomorphism is lattice zero. (Contributed by NM, 17-Aug-2014.) |
| Ref | Expression |
|---|---|
| dih0sb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dih0sb.o | ⊢ 0 = (0.‘𝐾) |
| dih0sb.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dih0sb.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dih0sb.v | ⊢ 𝑉 = (Base‘𝑈) |
| dih0sb.z | ⊢ 𝑍 = (0g‘𝑈) |
| dih0sb.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| dih0sb.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dih0sb.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
| Ref | Expression |
|---|---|
| dih0sb | ⊢ (𝜑 → (𝑋 = {𝑍} ↔ (◡𝐼‘𝑋) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dih0sb.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dih0sb.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 3 | dih0sb.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | dih0sb.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
| 5 | dih0sb.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | dih0sb.z | . . . . 5 ⊢ 𝑍 = (0g‘𝑈) | |
| 7 | 1, 2, 5, 6 | dih0rn 41272 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑍} ∈ ran 𝐼) |
| 8 | 3, 7 | syl 17 | . . 3 ⊢ (𝜑 → {𝑍} ∈ ran 𝐼) |
| 9 | 1, 2, 3, 4, 8 | dihcnv11 41263 | . 2 ⊢ (𝜑 → ((◡𝐼‘𝑋) = (◡𝐼‘{𝑍}) ↔ 𝑋 = {𝑍})) |
| 10 | dih0sb.o | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 11 | 1, 10, 2, 5, 6 | dih0cnv 41271 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐼‘{𝑍}) = 0 ) |
| 12 | 3, 11 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐼‘{𝑍}) = 0 ) |
| 13 | 12 | eqeq2d 2740 | . 2 ⊢ (𝜑 → ((◡𝐼‘𝑋) = (◡𝐼‘{𝑍}) ↔ (◡𝐼‘𝑋) = 0 )) |
| 14 | 9, 13 | bitr3d 281 | 1 ⊢ (𝜑 → (𝑋 = {𝑍} ↔ (◡𝐼‘𝑋) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 ◡ccnv 5630 ran crn 5632 ‘cfv 6499 Basecbs 17156 0gc0g 17379 0.cp0 18363 LSpanclspn 20910 HLchlt 39337 LHypclh 39972 DVecHcdvh 41066 DIsoHcdih 41216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-riotaBAD 38940 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17381 df-proset 18236 df-poset 18255 df-plt 18270 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-p0 18365 df-p1 18366 df-lat 18374 df-clat 18441 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19232 df-lsm 19551 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-oppr 20258 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-dvr 20322 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 df-oposet 39163 df-ol 39165 df-oml 39166 df-covers 39253 df-ats 39254 df-atl 39285 df-cvlat 39309 df-hlat 39338 df-llines 39486 df-lplanes 39487 df-lvols 39488 df-lines 39489 df-psubsp 39491 df-pmap 39492 df-padd 39784 df-lhyp 39976 df-laut 39977 df-ldil 40092 df-ltrn 40093 df-trl 40147 df-tendo 40743 df-edring 40745 df-disoa 41017 df-dvech 41067 df-dib 41127 df-dic 41161 df-dih 41217 |
| This theorem is referenced by: djhcvat42 41403 |
| Copyright terms: Public domain | W3C validator |