![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochnel2 | Structured version Visualization version GIF version |
Description: A nonzero member of a subspace doesn't belong to the orthocomplement of the subspace. (Contributed by NM, 28-Feb-2015.) |
Ref | Expression |
---|---|
dochnoncon.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochnoncon.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochnoncon.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
dochnoncon.z | ⊢ 0 = (0g‘𝑈) |
dochnoncon.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochnel2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochnel2.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
dochnel2.x | ⊢ (𝜑 → 𝑋 ∈ (𝑇 ∖ { 0 })) |
Ref | Expression |
---|---|
dochnel2 | ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochnel2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑇 ∖ { 0 })) | |
2 | 1 | eldifbd 3961 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ { 0 }) |
3 | 1 | eldifad 3960 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑇) |
4 | elin 3964 | . . . . 5 ⊢ (𝑋 ∈ (𝑇 ∩ ( ⊥ ‘𝑇)) ↔ (𝑋 ∈ 𝑇 ∧ 𝑋 ∈ ( ⊥ ‘𝑇))) | |
5 | dochnel2.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | dochnel2.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
7 | dochnoncon.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | dochnoncon.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
9 | dochnoncon.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑈) | |
10 | dochnoncon.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑈) | |
11 | dochnoncon.o | . . . . . . . 8 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
12 | 7, 8, 9, 10, 11 | dochnoncon 40251 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑇 ∈ 𝑆) → (𝑇 ∩ ( ⊥ ‘𝑇)) = { 0 }) |
13 | 5, 6, 12 | syl2anc 585 | . . . . . 6 ⊢ (𝜑 → (𝑇 ∩ ( ⊥ ‘𝑇)) = { 0 }) |
14 | 13 | eleq2d 2820 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑇 ∩ ( ⊥ ‘𝑇)) ↔ 𝑋 ∈ { 0 })) |
15 | 4, 14 | bitr3id 285 | . . . 4 ⊢ (𝜑 → ((𝑋 ∈ 𝑇 ∧ 𝑋 ∈ ( ⊥ ‘𝑇)) ↔ 𝑋 ∈ { 0 })) |
16 | 15 | biimpd 228 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ 𝑇 ∧ 𝑋 ∈ ( ⊥ ‘𝑇)) → 𝑋 ∈ { 0 })) |
17 | 3, 16 | mpand 694 | . 2 ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘𝑇) → 𝑋 ∈ { 0 })) |
18 | 2, 17 | mtod 197 | 1 ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∖ cdif 3945 ∩ cin 3947 {csn 4628 ‘cfv 6541 0gc0g 17382 LSubSpclss 20535 HLchlt 38209 LHypclh 38844 DVecHcdvh 39938 ocHcoch 40207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-riotaBAD 37812 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-tpos 8208 df-undef 8255 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17142 df-ress 17171 df-plusg 17207 df-mulr 17208 df-sca 17210 df-vsca 17211 df-0g 17384 df-proset 18245 df-poset 18263 df-plt 18280 df-lub 18296 df-glb 18297 df-join 18298 df-meet 18299 df-p0 18375 df-p1 18376 df-lat 18382 df-clat 18449 df-mgm 18558 df-sgrp 18607 df-mnd 18623 df-submnd 18669 df-grp 18819 df-minusg 18820 df-sbg 18821 df-subg 18998 df-cntz 19176 df-lsm 19499 df-cmn 19645 df-abl 19646 df-mgp 19983 df-ur 20000 df-ring 20052 df-oppr 20143 df-dvdsr 20164 df-unit 20165 df-invr 20195 df-dvr 20208 df-drng 20310 df-lmod 20466 df-lss 20536 df-lsp 20576 df-lvec 20707 df-lsatoms 37835 df-oposet 38035 df-ol 38037 df-oml 38038 df-covers 38125 df-ats 38126 df-atl 38157 df-cvlat 38181 df-hlat 38210 df-llines 38358 df-lplanes 38359 df-lvols 38360 df-lines 38361 df-psubsp 38363 df-pmap 38364 df-padd 38656 df-lhyp 38848 df-laut 38849 df-ldil 38964 df-ltrn 38965 df-trl 39019 df-tendo 39615 df-edring 39617 df-disoa 39889 df-dvech 39939 df-dib 39999 df-dic 40033 df-dih 40089 df-doch 40208 |
This theorem is referenced by: dochnel 40253 |
Copyright terms: Public domain | W3C validator |