![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhlvec | Structured version Visualization version GIF version |
Description: The full vector space π constructed from a Hilbert lattice πΎ (given a fiducial hyperplane π) is a left module. (Contributed by NM, 23-May-2015.) |
Ref | Expression |
---|---|
dvhlvec.h | β’ π» = (LHypβπΎ) |
dvhlvec.u | β’ π = ((DVecHβπΎ)βπ) |
dvhlvec.k | β’ (π β (πΎ β HL β§ π β π»)) |
Ref | Expression |
---|---|
dvhlvec | β’ (π β π β LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhlvec.k | . 2 β’ (π β (πΎ β HL β§ π β π»)) | |
2 | eqid 2730 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | dvhlvec.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | eqid 2730 | . . 3 β’ ((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) | |
5 | eqid 2730 | . . 3 β’ ((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) | |
6 | dvhlvec.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
7 | eqid 2730 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
8 | eqid 2730 | . . 3 β’ (+gβ(Scalarβπ)) = (+gβ(Scalarβπ)) | |
9 | eqid 2730 | . . 3 β’ (+gβπ) = (+gβπ) | |
10 | eqid 2730 | . . 3 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
11 | eqid 2730 | . . 3 β’ (invgβ(Scalarβπ)) = (invgβ(Scalarβπ)) | |
12 | eqid 2730 | . . 3 β’ (.rβ(Scalarβπ)) = (.rβ(Scalarβπ)) | |
13 | eqid 2730 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
14 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | dvhlveclem 40282 | . 2 β’ ((πΎ β HL β§ π β π») β π β LVec) |
15 | 1, 14 | syl 17 | 1 β’ (π β π β LVec) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βcfv 6542 Basecbs 17148 +gcplusg 17201 .rcmulr 17202 Scalarcsca 17204 Β·π cvsca 17205 0gc0g 17389 invgcminusg 18856 LVecclvec 20857 HLchlt 38523 LHypclh 39158 LTrncltrn 39275 TEndoctendo 39926 DVecHcdvh 40252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-riotaBAD 38126 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-undef 8260 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-0g 17391 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20502 df-lmod 20616 df-lvec 20858 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 df-lvols 38674 df-lines 38675 df-psubsp 38677 df-pmap 38678 df-padd 38970 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 df-trl 39333 df-tendo 39929 df-edring 39931 df-dvech 40253 |
This theorem is referenced by: dvhlmod 40284 dih1dimatlem 40503 dihlspsnssN 40506 dihlspsnat 40507 dihpN 40510 dihlatat 40511 dochsat 40557 dochshpncl 40558 dochlkr 40559 dochkrshp 40560 dochkrshp3 40562 dvh2dimatN 40614 dvh3dim3N 40623 dochsatshp 40625 dochsatshpb 40626 dochexmidat 40633 dochexmidlem3 40636 dochsnkr 40646 dochsnkr2 40647 dochflcl 40649 dochfl1 40650 dochkr1 40652 dochkr1OLDN 40653 lcfl6lem 40672 lcfl7lem 40673 lcfl9a 40679 lclkrlem1 40680 lclkrlem2a 40681 lclkrlem2e 40685 lclkrlem2g 40687 lclkrlem2h 40688 lclkrlem2o 40695 lclkrlem2p 40696 lclkrlem2q 40697 lclkrlem2s 40699 lclkrlem2v 40702 lclkrslem1 40711 lcfrvalsnN 40715 lcfrlem16 40732 lcfrlem20 40736 lcfrlem25 40741 lcfrlem29 40745 lcfrlem31 40747 lcfrlem33 40749 lcfrlem35 40751 lcdlvec 40765 lcdlkreqN 40796 lcdlkreq2N 40797 mapdordlem2 40811 mapdsn3 40817 mapdrvallem2 40819 mapdcnvatN 40840 mapdat 40841 mapdpglem10 40855 mapdpglem15 40860 mapdpglem17N 40862 mapdpglem18 40863 mapdpglem19 40864 mapdpglem21 40866 mapdpglem22 40867 mapdheq4lem 40905 mapdheq4 40906 mapdh6lem1N 40907 mapdh6lem2N 40908 mapdh6aN 40909 mapdh6b0N 40910 mapdh6bN 40911 mapdh6cN 40912 mapdh6dN 40913 mapdh6eN 40914 mapdh6fN 40915 mapdh6hN 40917 mapdh7eN 40922 mapdh7dN 40924 mapdh7fN 40925 mapdh75fN 40929 mapdh8aa 40950 mapdh8ab 40951 mapdh8ad 40953 mapdh8b 40954 mapdh8c 40955 mapdh8d0N 40956 mapdh8d 40957 mapdh8e 40958 mapdh9a 40963 mapdh9aOLDN 40964 hdmap1eq4N 40980 hdmap1l6lem1 40981 hdmap1l6lem2 40982 hdmap1l6a 40983 hdmap1l6b0N 40984 hdmap1l6b 40985 hdmap1l6c 40986 hdmap1l6d 40987 hdmap1l6e 40988 hdmap1l6f 40989 hdmap1l6h 40991 hdmap1eulemOLDN 40997 hdmapval0 41007 hdmapval3lemN 41011 hdmap10lem 41013 hdmap11lem1 41015 hdmap11lem2 41016 hdmaprnlem4N 41027 hdmaprnlem3eN 41032 hdmap14lem1a 41040 hdmap14lem4a 41045 hdmap14lem11 41052 hgmap11 41076 hdmaplkr 41087 hdmapip1 41090 hgmapvvlem1 41097 hgmapvvlem2 41098 hgmapvvlem3 41099 hlhillvec 41129 |
Copyright terms: Public domain | W3C validator |