Proof of Theorem dvhlvec
Step | Hyp | Ref
| Expression |
1 | | dvhlvec.k |
. 2
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | eqid 2739 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
3 | | dvhlvec.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
4 | | eqid 2739 |
. . 3
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
5 | | eqid 2739 |
. . 3
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
6 | | dvhlvec.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
7 | | eqid 2739 |
. . 3
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
8 | | eqid 2739 |
. . 3
⊢
(+g‘(Scalar‘𝑈)) =
(+g‘(Scalar‘𝑈)) |
9 | | eqid 2739 |
. . 3
⊢
(+g‘𝑈) = (+g‘𝑈) |
10 | | eqid 2739 |
. . 3
⊢
(0g‘(Scalar‘𝑈)) =
(0g‘(Scalar‘𝑈)) |
11 | | eqid 2739 |
. . 3
⊢
(invg‘(Scalar‘𝑈)) =
(invg‘(Scalar‘𝑈)) |
12 | | eqid 2739 |
. . 3
⊢
(.r‘(Scalar‘𝑈)) =
(.r‘(Scalar‘𝑈)) |
13 | | eqid 2739 |
. . 3
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
14 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | dvhlveclem 39129 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LVec) |
15 | 1, 14 | syl 17 |
1
⊢ (𝜑 → 𝑈 ∈ LVec) |