![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhlvec | Structured version Visualization version GIF version |
Description: The full vector space π constructed from a Hilbert lattice πΎ (given a fiducial hyperplane π) is a left module. (Contributed by NM, 23-May-2015.) |
Ref | Expression |
---|---|
dvhlvec.h | β’ π» = (LHypβπΎ) |
dvhlvec.u | β’ π = ((DVecHβπΎ)βπ) |
dvhlvec.k | β’ (π β (πΎ β HL β§ π β π»)) |
Ref | Expression |
---|---|
dvhlvec | β’ (π β π β LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhlvec.k | . 2 β’ (π β (πΎ β HL β§ π β π»)) | |
2 | eqid 2733 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | dvhlvec.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | eqid 2733 | . . 3 β’ ((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) | |
5 | eqid 2733 | . . 3 β’ ((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) | |
6 | dvhlvec.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
7 | eqid 2733 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
8 | eqid 2733 | . . 3 β’ (+gβ(Scalarβπ)) = (+gβ(Scalarβπ)) | |
9 | eqid 2733 | . . 3 β’ (+gβπ) = (+gβπ) | |
10 | eqid 2733 | . . 3 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
11 | eqid 2733 | . . 3 β’ (invgβ(Scalarβπ)) = (invgβ(Scalarβπ)) | |
12 | eqid 2733 | . . 3 β’ (.rβ(Scalarβπ)) = (.rβ(Scalarβπ)) | |
13 | eqid 2733 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
14 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | dvhlveclem 39979 | . 2 β’ ((πΎ β HL β§ π β π») β π β LVec) |
15 | 1, 14 | syl 17 | 1 β’ (π β π β LVec) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βcfv 6544 Basecbs 17144 +gcplusg 17197 .rcmulr 17198 Scalarcsca 17200 Β·π cvsca 17201 0gc0g 17385 invgcminusg 18820 LVecclvec 20713 HLchlt 38220 LHypclh 38855 LTrncltrn 38972 TEndoctendo 39623 DVecHcdvh 39949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-riotaBAD 37823 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-undef 8258 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17387 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-p1 18379 df-lat 18385 df-clat 18452 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-mgp 19988 df-ur 20005 df-ring 20058 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-drng 20359 df-lmod 20473 df-lvec 20714 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 df-llines 38369 df-lplanes 38370 df-lvols 38371 df-lines 38372 df-psubsp 38374 df-pmap 38375 df-padd 38667 df-lhyp 38859 df-laut 38860 df-ldil 38975 df-ltrn 38976 df-trl 39030 df-tendo 39626 df-edring 39628 df-dvech 39950 |
This theorem is referenced by: dvhlmod 39981 dih1dimatlem 40200 dihlspsnssN 40203 dihlspsnat 40204 dihpN 40207 dihlatat 40208 dochsat 40254 dochshpncl 40255 dochlkr 40256 dochkrshp 40257 dochkrshp3 40259 dvh2dimatN 40311 dvh3dim3N 40320 dochsatshp 40322 dochsatshpb 40323 dochexmidat 40330 dochexmidlem3 40333 dochsnkr 40343 dochsnkr2 40344 dochflcl 40346 dochfl1 40347 dochkr1 40349 dochkr1OLDN 40350 lcfl6lem 40369 lcfl7lem 40370 lcfl9a 40376 lclkrlem1 40377 lclkrlem2a 40378 lclkrlem2e 40382 lclkrlem2g 40384 lclkrlem2h 40385 lclkrlem2o 40392 lclkrlem2p 40393 lclkrlem2q 40394 lclkrlem2s 40396 lclkrlem2v 40399 lclkrslem1 40408 lcfrvalsnN 40412 lcfrlem16 40429 lcfrlem20 40433 lcfrlem25 40438 lcfrlem29 40442 lcfrlem31 40444 lcfrlem33 40446 lcfrlem35 40448 lcdlvec 40462 lcdlkreqN 40493 lcdlkreq2N 40494 mapdordlem2 40508 mapdsn3 40514 mapdrvallem2 40516 mapdcnvatN 40537 mapdat 40538 mapdpglem10 40552 mapdpglem15 40557 mapdpglem17N 40559 mapdpglem18 40560 mapdpglem19 40561 mapdpglem21 40563 mapdpglem22 40564 mapdheq4lem 40602 mapdheq4 40603 mapdh6lem1N 40604 mapdh6lem2N 40605 mapdh6aN 40606 mapdh6b0N 40607 mapdh6bN 40608 mapdh6cN 40609 mapdh6dN 40610 mapdh6eN 40611 mapdh6fN 40612 mapdh6hN 40614 mapdh7eN 40619 mapdh7dN 40621 mapdh7fN 40622 mapdh75fN 40626 mapdh8aa 40647 mapdh8ab 40648 mapdh8ad 40650 mapdh8b 40651 mapdh8c 40652 mapdh8d0N 40653 mapdh8d 40654 mapdh8e 40655 mapdh9a 40660 mapdh9aOLDN 40661 hdmap1eq4N 40677 hdmap1l6lem1 40678 hdmap1l6lem2 40679 hdmap1l6a 40680 hdmap1l6b0N 40681 hdmap1l6b 40682 hdmap1l6c 40683 hdmap1l6d 40684 hdmap1l6e 40685 hdmap1l6f 40686 hdmap1l6h 40688 hdmap1eulemOLDN 40694 hdmapval0 40704 hdmapval3lemN 40708 hdmap10lem 40710 hdmap11lem1 40712 hdmap11lem2 40713 hdmaprnlem4N 40724 hdmaprnlem3eN 40729 hdmap14lem1a 40737 hdmap14lem4a 40742 hdmap14lem11 40749 hgmap11 40773 hdmaplkr 40784 hdmapip1 40787 hgmapvvlem1 40794 hgmapvvlem2 40795 hgmapvvlem3 40796 hlhillvec 40826 |
Copyright terms: Public domain | W3C validator |