| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmidgsum | Structured version Visualization version GIF version | ||
| Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum. (Contributed by AV, 7-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmidgsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cpmidgsum.b | ⊢ 𝐵 = (Base‘𝐴) |
| cpmidgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmidgsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| cpmidgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
| cpmidgsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| cpmidgsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| cpmidgsum.1 | ⊢ 1 = (1r‘𝑌) |
| cpmidgsum.u | ⊢ 𝑈 = (algSc‘𝑃) |
| cpmidgsum.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cpmidgsum.k | ⊢ 𝐾 = (𝐶‘𝑀) |
| cpmidgsum.h | ⊢ 𝐻 = (𝐾 · 1 ) |
| Ref | Expression |
|---|---|
| cpmidgsum | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpmidgsum.k | . . 3 ⊢ 𝐾 = (𝐶‘𝑀) | |
| 2 | cpmidgsum.c | . . . 4 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 3 | cpmidgsum.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 4 | cpmidgsum.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 5 | cpmidgsum.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 6 | eqid 2734 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 7 | 2, 3, 4, 5, 6 | chpmatply1 22805 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ (Base‘𝑃)) |
| 8 | 1, 7 | eqeltrid 2837 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐾 ∈ (Base‘𝑃)) |
| 9 | cpmidgsum.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 10 | eqid 2734 | . . 3 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 11 | cpmidgsum.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 12 | cpmidgsum.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
| 13 | cpmidgsum.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
| 14 | eqid 2734 | . . 3 ⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) | |
| 15 | cpmidgsum.u | . . 3 ⊢ 𝑈 = (algSc‘𝑃) | |
| 16 | eqid 2734 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 17 | cpmidgsum.1 | . . 3 ⊢ 1 = (1r‘𝑌) | |
| 18 | cpmidgsum.h | . . 3 ⊢ 𝐻 = (𝐾 · 1 ) | |
| 19 | 5, 9, 10, 11, 12, 13, 14, 3, 4, 15, 16, 6, 15, 17, 18 | pmatcollpwscmat 22764 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐾 ∈ (Base‘𝑃)) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))))) |
| 20 | 8, 19 | syld3an3 1410 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 Fincfn 8968 ℕ0cn0 12510 Basecbs 17230 ·𝑠 cvsca 17281 Σg cgsu 17461 .gcmg 19059 mulGrpcmgp 20110 1rcur 20151 CRingccrg 20204 algSccascl 21839 var1cv1 22144 Poly1cpl1 22145 coe1cco1 22146 Mat cmat 22378 matToPolyMat cmat2pmat 22677 CharPlyMat cchpmat 22799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 ax-mulf 11218 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-ot 4617 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-ofr 7681 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-tpos 8234 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-xnn0 12584 df-z 12598 df-dec 12718 df-uz 12862 df-rp 13018 df-fz 13531 df-fzo 13678 df-seq 14026 df-exp 14086 df-hash 14353 df-word 14536 df-lsw 14584 df-concat 14592 df-s1 14617 df-substr 14662 df-pfx 14692 df-splice 14771 df-reverse 14780 df-s2 14870 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-hom 17301 df-cco 17302 df-0g 17462 df-gsum 17463 df-prds 17468 df-pws 17470 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-mhm 18770 df-submnd 18771 df-efmnd 18856 df-grp 18928 df-minusg 18929 df-sbg 18930 df-mulg 19060 df-subg 19115 df-ghm 19205 df-gim 19251 df-cntz 19309 df-oppg 19338 df-symg 19360 df-pmtr 19433 df-psgn 19482 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-srg 20157 df-ring 20205 df-cring 20206 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-invr 20361 df-dvr 20374 df-rhm 20445 df-subrng 20519 df-subrg 20543 df-drng 20704 df-lmod 20833 df-lss 20903 df-sra 21145 df-rgmod 21146 df-cnfld 21332 df-zring 21425 df-zrh 21481 df-dsmm 21719 df-frlm 21734 df-assa 21840 df-ascl 21842 df-psr 21896 df-mvr 21897 df-mpl 21898 df-opsr 21900 df-psr1 22148 df-vr1 22149 df-ply1 22150 df-coe1 22151 df-mamu 22362 df-mat 22379 df-mdet 22558 df-mat2pmat 22680 df-decpmat 22736 df-chpmat 22800 |
| This theorem is referenced by: cpmidgsumm2pm 22842 cpmidg2sum 22853 |
| Copyright terms: Public domain | W3C validator |