![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdlmod | Structured version Visualization version GIF version |
Description: The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lcdlmod.h | β’ π» = (LHypβπΎ) |
lcdlmod.c | β’ πΆ = ((LCDualβπΎ)βπ) |
lcdlmod.k | β’ (π β (πΎ β HL β§ π β π»)) |
Ref | Expression |
---|---|
lcdlmod | β’ (π β πΆ β LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdlmod.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | lcdlmod.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
3 | lcdlmod.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
4 | 1, 2, 3 | lcdlvec 41133 | . 2 β’ (π β πΆ β LVec) |
5 | lveclmod 20995 | . 2 β’ (πΆ β LVec β πΆ β LMod) | |
6 | 4, 5 | syl 17 | 1 β’ (π β πΆ β LMod) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βcfv 6547 LModclmod 20747 LVecclvec 20991 HLchlt 38891 LHypclh 39526 LCDualclcd 41128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38494 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-of 7683 df-om 7870 df-1st 7992 df-2nd 7993 df-tpos 8230 df-undef 8277 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-0g 17422 df-mre 17565 df-mrc 17566 df-acs 17568 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-p1 18417 df-lat 18423 df-clat 18490 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-grp 18897 df-minusg 18898 df-sbg 18899 df-subg 19082 df-cntz 19272 df-oppg 19301 df-lsm 19595 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-oppr 20277 df-dvdsr 20300 df-unit 20301 df-invr 20331 df-dvr 20344 df-drng 20630 df-lmod 20749 df-lss 20820 df-lsp 20860 df-lvec 20992 df-lsatoms 38517 df-lshyp 38518 df-lcv 38560 df-lfl 38599 df-lkr 38627 df-ldual 38665 df-oposet 38717 df-ol 38719 df-oml 38720 df-covers 38807 df-ats 38808 df-atl 38839 df-cvlat 38863 df-hlat 38892 df-llines 39040 df-lplanes 39041 df-lvols 39042 df-lines 39043 df-psubsp 39045 df-pmap 39046 df-padd 39338 df-lhyp 39530 df-laut 39531 df-ldil 39646 df-ltrn 39647 df-trl 39701 df-tgrp 40285 df-tendo 40297 df-edring 40299 df-dveca 40545 df-disoa 40571 df-dvech 40621 df-dib 40681 df-dic 40715 df-dih 40771 df-doch 40890 df-djh 40937 df-lcdual 41129 |
This theorem is referenced by: lcdvscl 41147 lcdlssvscl 41148 lcdvsass 41149 lcd0vcl 41156 lcd0vs 41157 lcdvs0N 41158 lcdvsub 41159 lcdvsubval 41160 mapdcv 41202 mapdincl 41203 mapdin 41204 mapdlsmcl 41205 mapdlsm 41206 mapdcnvatN 41208 mapdspex 41210 mapdn0 41211 mapdindp 41213 mapdpglem2 41215 mapdpglem2a 41216 mapdpglem3 41217 mapdpglem5N 41219 mapdpglem6 41220 mapdpglem8 41221 mapdpglem12 41225 mapdpglem13 41226 mapdpglem21 41234 mapdpglem30a 41237 mapdpglem30b 41238 mapdpglem27 41241 mapdpglem28 41243 mapdpglem30 41244 mapdpglem31 41245 mapdheq2 41271 mapdh6aN 41277 mapdh6bN 41279 mapdh6cN 41280 mapdh6dN 41281 mapdh6hN 41285 hdmap1l6a 41351 hdmap1l6b 41353 hdmap1l6c 41354 hdmap1l6d 41355 hdmap1l6h 41359 hdmap10 41382 hdmapeq0 41386 hdmapneg 41388 hdmap11 41390 hdmaprnlem3N 41392 hdmaprnlem3uN 41393 hdmaprnlem7N 41397 hdmaprnlem8N 41398 hdmaprnlem9N 41399 hdmaprnlem3eN 41400 hdmaprnlem16N 41404 hdmap14lem2a 41409 hdmap14lem4a 41413 hdmap14lem6 41415 hdmap14lem8 41417 hdmap14lem13 41422 hgmapval1 41435 hgmapadd 41436 hgmapmul 41437 hgmaprnlem2N 41439 hgmaprnlem4N 41441 hdmaplkr 41455 |
Copyright terms: Public domain | W3C validator |