Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdlmod | Structured version Visualization version GIF version |
Description: The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lcdlmod.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdlmod.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdlmod.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
lcdlmod | ⊢ (𝜑 → 𝐶 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdlmod.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcdlmod.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | lcdlmod.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlvec 39612 | . 2 ⊢ (𝜑 → 𝐶 ∈ LVec) |
5 | lveclmod 20377 | . 2 ⊢ (𝐶 ∈ LVec → 𝐶 ∈ LMod) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ‘cfv 6437 LModclmod 20132 LVecclvec 20373 HLchlt 37371 LHypclh 38005 LCDualclcd 39607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-riotaBAD 36974 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-of 7542 df-om 7722 df-1st 7840 df-2nd 7841 df-tpos 8051 df-undef 8098 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-map 8626 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-struct 16857 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-plusg 16984 df-mulr 16985 df-sca 16987 df-vsca 16988 df-0g 17161 df-mre 17304 df-mrc 17305 df-acs 17307 df-proset 18022 df-poset 18040 df-plt 18057 df-lub 18073 df-glb 18074 df-join 18075 df-meet 18076 df-p0 18152 df-p1 18153 df-lat 18159 df-clat 18226 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-submnd 18440 df-grp 18589 df-minusg 18590 df-sbg 18591 df-subg 18761 df-cntz 18932 df-oppg 18959 df-lsm 19250 df-cmn 19397 df-abl 19398 df-mgp 19730 df-ur 19747 df-ring 19794 df-oppr 19871 df-dvdsr 19892 df-unit 19893 df-invr 19923 df-dvr 19934 df-drng 20002 df-lmod 20134 df-lss 20203 df-lsp 20243 df-lvec 20374 df-lsatoms 36997 df-lshyp 36998 df-lcv 37040 df-lfl 37079 df-lkr 37107 df-ldual 37145 df-oposet 37197 df-ol 37199 df-oml 37200 df-covers 37287 df-ats 37288 df-atl 37319 df-cvlat 37343 df-hlat 37372 df-llines 37519 df-lplanes 37520 df-lvols 37521 df-lines 37522 df-psubsp 37524 df-pmap 37525 df-padd 37817 df-lhyp 38009 df-laut 38010 df-ldil 38125 df-ltrn 38126 df-trl 38180 df-tgrp 38764 df-tendo 38776 df-edring 38778 df-dveca 39024 df-disoa 39050 df-dvech 39100 df-dib 39160 df-dic 39194 df-dih 39250 df-doch 39369 df-djh 39416 df-lcdual 39608 |
This theorem is referenced by: lcdvscl 39626 lcdlssvscl 39627 lcdvsass 39628 lcd0vcl 39635 lcd0vs 39636 lcdvs0N 39637 lcdvsub 39638 lcdvsubval 39639 mapdcv 39681 mapdincl 39682 mapdin 39683 mapdlsmcl 39684 mapdlsm 39685 mapdcnvatN 39687 mapdspex 39689 mapdn0 39690 mapdindp 39692 mapdpglem2 39694 mapdpglem2a 39695 mapdpglem3 39696 mapdpglem5N 39698 mapdpglem6 39699 mapdpglem8 39700 mapdpglem12 39704 mapdpglem13 39705 mapdpglem21 39713 mapdpglem30a 39716 mapdpglem30b 39717 mapdpglem27 39720 mapdpglem28 39722 mapdpglem30 39723 mapdpglem31 39724 mapdheq2 39750 mapdh6aN 39756 mapdh6bN 39758 mapdh6cN 39759 mapdh6dN 39760 mapdh6hN 39764 hdmap1l6a 39830 hdmap1l6b 39832 hdmap1l6c 39833 hdmap1l6d 39834 hdmap1l6h 39838 hdmap10 39861 hdmapeq0 39865 hdmapneg 39867 hdmap11 39869 hdmaprnlem3N 39871 hdmaprnlem3uN 39872 hdmaprnlem7N 39876 hdmaprnlem8N 39877 hdmaprnlem9N 39878 hdmaprnlem3eN 39879 hdmaprnlem16N 39883 hdmap14lem2a 39888 hdmap14lem4a 39892 hdmap14lem6 39894 hdmap14lem8 39896 hdmap14lem13 39901 hgmapval1 39914 hgmapadd 39915 hgmapmul 39916 hgmaprnlem2N 39918 hgmaprnlem4N 39920 hdmaplkr 39934 |
Copyright terms: Public domain | W3C validator |