![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdlmod | Structured version Visualization version GIF version |
Description: The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lcdlmod.h | β’ π» = (LHypβπΎ) |
lcdlmod.c | β’ πΆ = ((LCDualβπΎ)βπ) |
lcdlmod.k | β’ (π β (πΎ β HL β§ π β π»)) |
Ref | Expression |
---|---|
lcdlmod | β’ (π β πΆ β LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdlmod.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | lcdlmod.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
3 | lcdlmod.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
4 | 1, 2, 3 | lcdlvec 40510 | . 2 β’ (π β πΆ β LVec) |
5 | lveclmod 20717 | . 2 β’ (πΆ β LVec β πΆ β LMod) | |
6 | 4, 5 | syl 17 | 1 β’ (π β πΆ β LMod) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βcfv 6544 LModclmod 20471 LVecclvec 20713 HLchlt 38268 LHypclh 38903 LCDualclcd 40505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-riotaBAD 37871 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-undef 8258 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17387 df-mre 17530 df-mrc 17531 df-acs 17533 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-p1 18379 df-lat 18385 df-clat 18452 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-cntz 19181 df-oppg 19210 df-lsm 19504 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-drng 20359 df-lmod 20473 df-lss 20543 df-lsp 20583 df-lvec 20714 df-lsatoms 37894 df-lshyp 37895 df-lcv 37937 df-lfl 37976 df-lkr 38004 df-ldual 38042 df-oposet 38094 df-ol 38096 df-oml 38097 df-covers 38184 df-ats 38185 df-atl 38216 df-cvlat 38240 df-hlat 38269 df-llines 38417 df-lplanes 38418 df-lvols 38419 df-lines 38420 df-psubsp 38422 df-pmap 38423 df-padd 38715 df-lhyp 38907 df-laut 38908 df-ldil 39023 df-ltrn 39024 df-trl 39078 df-tgrp 39662 df-tendo 39674 df-edring 39676 df-dveca 39922 df-disoa 39948 df-dvech 39998 df-dib 40058 df-dic 40092 df-dih 40148 df-doch 40267 df-djh 40314 df-lcdual 40506 |
This theorem is referenced by: lcdvscl 40524 lcdlssvscl 40525 lcdvsass 40526 lcd0vcl 40533 lcd0vs 40534 lcdvs0N 40535 lcdvsub 40536 lcdvsubval 40537 mapdcv 40579 mapdincl 40580 mapdin 40581 mapdlsmcl 40582 mapdlsm 40583 mapdcnvatN 40585 mapdspex 40587 mapdn0 40588 mapdindp 40590 mapdpglem2 40592 mapdpglem2a 40593 mapdpglem3 40594 mapdpglem5N 40596 mapdpglem6 40597 mapdpglem8 40598 mapdpglem12 40602 mapdpglem13 40603 mapdpglem21 40611 mapdpglem30a 40614 mapdpglem30b 40615 mapdpglem27 40618 mapdpglem28 40620 mapdpglem30 40621 mapdpglem31 40622 mapdheq2 40648 mapdh6aN 40654 mapdh6bN 40656 mapdh6cN 40657 mapdh6dN 40658 mapdh6hN 40662 hdmap1l6a 40728 hdmap1l6b 40730 hdmap1l6c 40731 hdmap1l6d 40732 hdmap1l6h 40736 hdmap10 40759 hdmapeq0 40763 hdmapneg 40765 hdmap11 40767 hdmaprnlem3N 40769 hdmaprnlem3uN 40770 hdmaprnlem7N 40774 hdmaprnlem8N 40775 hdmaprnlem9N 40776 hdmaprnlem3eN 40777 hdmaprnlem16N 40781 hdmap14lem2a 40786 hdmap14lem4a 40790 hdmap14lem6 40792 hdmap14lem8 40794 hdmap14lem13 40799 hgmapval1 40812 hgmapadd 40813 hgmapmul 40814 hgmaprnlem2N 40816 hgmaprnlem4N 40818 hdmaplkr 40832 |
Copyright terms: Public domain | W3C validator |