| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1mulrtss | Structured version Visualization version GIF version | ||
| Description: The roots of a factor 𝐹 are also roots of the product of polynomials (𝐹 · 𝐺). (Contributed by Thierry Arnoux, 8-Jun-2025.) |
| Ref | Expression |
|---|---|
| ply1dg1rt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1dg1rt.u | ⊢ 𝑈 = (Base‘𝑃) |
| ply1dg1rt.o | ⊢ 𝑂 = (eval1‘𝑅) |
| ply1dg1rt.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ply1dg1rt.0 | ⊢ 0 = (0g‘𝑅) |
| ply1mulrtss.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| ply1mulrtss.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| ply1mulrtss.g | ⊢ (𝜑 → 𝐺 ∈ 𝑈) |
| ply1mulrtss.1 | ⊢ · = (.r‘𝑃) |
| Ref | Expression |
|---|---|
| ply1mulrtss | ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1dg1rt.o | . . . . . . . . . . . 12 ⊢ 𝑂 = (eval1‘𝑅) | |
| 2 | ply1dg1rt.p | . . . . . . . . . . . 12 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | ply1dg1rt.u | . . . . . . . . . . . 12 ⊢ 𝑈 = (Base‘𝑃) | |
| 4 | ply1mulrtss.r | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 5 | eqid 2736 | . . . . . . . . . . . 12 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | ply1mulrtss.f | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 7 | 1, 2, 3, 4, 5, 6 | evl1fvf 33581 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑂‘𝐹):(Base‘𝑅)⟶(Base‘𝑅)) |
| 8 | 7 | ffnd 6712 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑂‘𝐹) Fn (Base‘𝑅)) |
| 9 | fniniseg2 7057 | . . . . . . . . . 10 ⊢ ((𝑂‘𝐹) Fn (Base‘𝑅) → (◡(𝑂‘𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) | |
| 10 | 8, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) |
| 11 | 10 | eleq2d 2821 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 })) |
| 12 | 11 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) |
| 13 | rabid 3442 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) | |
| 14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) |
| 15 | 14 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ (Base‘𝑅)) |
| 16 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑅 ∈ CRing) |
| 17 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝐹 ∈ 𝑈) |
| 18 | 14 | simprd 495 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐹)‘𝑥) = 0 ) |
| 19 | 17, 18 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝐹 ∈ 𝑈 ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) |
| 20 | ply1mulrtss.g | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ 𝑈) | |
| 21 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝐺 ∈ 𝑈) |
| 22 | eqidd 2737 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑥)) | |
| 23 | 21, 22 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝐺 ∈ 𝑈 ∧ ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑥))) |
| 24 | ply1mulrtss.1 | . . . . . . . 8 ⊢ · = (.r‘𝑃) | |
| 25 | eqid 2736 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 26 | 1, 2, 5, 3, 16, 15, 19, 23, 24, 25 | evl1muld 22286 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝐹 · 𝐺) ∈ 𝑈 ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥)))) |
| 27 | 26 | simprd 495 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥))) |
| 28 | ply1dg1rt.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 29 | 16 | crngringd 20211 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑅 ∈ Ring) |
| 30 | 1, 2, 5, 3, 16, 15, 21 | fveval1fvcl 22276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐺)‘𝑥) ∈ (Base‘𝑅)) |
| 31 | 5, 25, 28, 29, 30 | ringlzd 20260 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥)) = 0 ) |
| 32 | 27, 31 | eqtrd 2771 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 ) |
| 33 | 15, 32 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) |
| 34 | rabid 3442 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) | |
| 35 | 2 | ply1crng 22139 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 36 | 4, 35 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑃 ∈ CRing) |
| 37 | 36 | crngringd 20211 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 38 | 3, 24, 37, 6, 20 | ringcld 20225 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝑈) |
| 39 | 1, 2, 3, 4, 5, 38 | evl1fvf 33581 | . . . . . . . . 9 ⊢ (𝜑 → (𝑂‘(𝐹 · 𝐺)):(Base‘𝑅)⟶(Base‘𝑅)) |
| 40 | 39 | ffnd 6712 | . . . . . . . 8 ⊢ (𝜑 → (𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅)) |
| 41 | fniniseg2 7057 | . . . . . . . 8 ⊢ ((𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅) → (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) | |
| 42 | 40, 41 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) |
| 43 | 42 | eleq2d 2821 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 })) |
| 44 | 43 | biimpar 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
| 45 | 34, 44 | sylan2br 595 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
| 46 | 33, 45 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
| 47 | 46 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 }) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }))) |
| 48 | 47 | ssrdv 3969 | 1 ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 ⊆ wss 3931 {csn 4606 ◡ccnv 5658 “ cima 5662 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 .rcmulr 17277 0gc0g 17458 CRingccrg 20199 Poly1cpl1 22117 eval1ce1 22257 deg1cdg1 26016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-lmod 20824 df-lss 20894 df-lsp 20934 df-assa 21818 df-asp 21819 df-ascl 21820 df-psr 21874 df-mvr 21875 df-mpl 21876 df-opsr 21878 df-evls 22037 df-evl 22038 df-psr1 22120 df-ply1 22122 df-evl1 22259 |
| This theorem is referenced by: ply1dg3rt0irred 33600 |
| Copyright terms: Public domain | W3C validator |