Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1mulrtss Structured version   Visualization version   GIF version

Theorem ply1mulrtss 33523
Description: The roots of a factor 𝐹 are also roots of the product of polynomials (𝐹 · 𝐺). (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
ply1dg1rt.p 𝑃 = (Poly1𝑅)
ply1dg1rt.u 𝑈 = (Base‘𝑃)
ply1dg1rt.o 𝑂 = (eval1𝑅)
ply1dg1rt.d 𝐷 = (deg1𝑅)
ply1dg1rt.0 0 = (0g𝑅)
ply1mulrtss.r (𝜑𝑅 ∈ CRing)
ply1mulrtss.f (𝜑𝐹𝑈)
ply1mulrtss.g (𝜑𝐺𝑈)
ply1mulrtss.1 · = (.r𝑃)
Assertion
Ref Expression
ply1mulrtss (𝜑 → ((𝑂𝐹) “ { 0 }) ⊆ ((𝑂‘(𝐹 · 𝐺)) “ { 0 }))

Proof of Theorem ply1mulrtss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1dg1rt.o . . . . . . . . . . . 12 𝑂 = (eval1𝑅)
2 ply1dg1rt.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
3 ply1dg1rt.u . . . . . . . . . . . 12 𝑈 = (Base‘𝑃)
4 ply1mulrtss.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
5 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
6 ply1mulrtss.f . . . . . . . . . . . 12 (𝜑𝐹𝑈)
71, 2, 3, 4, 5, 6evl1fvf 33505 . . . . . . . . . . 11 (𝜑 → (𝑂𝐹):(Base‘𝑅)⟶(Base‘𝑅))
87ffnd 6671 . . . . . . . . . 10 (𝜑 → (𝑂𝐹) Fn (Base‘𝑅))
9 fniniseg2 7016 . . . . . . . . . 10 ((𝑂𝐹) Fn (Base‘𝑅) → ((𝑂𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐹)‘𝑥) = 0 })
108, 9syl 17 . . . . . . . . 9 (𝜑 → ((𝑂𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐹)‘𝑥) = 0 })
1110eleq2d 2814 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑂𝐹) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐹)‘𝑥) = 0 }))
1211biimpa 476 . . . . . . 7 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐹)‘𝑥) = 0 })
13 rabid 3424 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐹)‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂𝐹)‘𝑥) = 0 ))
1412, 13sylib 218 . . . . . 6 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂𝐹)‘𝑥) = 0 ))
1514simpld 494 . . . . 5 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → 𝑥 ∈ (Base‘𝑅))
164adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → 𝑅 ∈ CRing)
176adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → 𝐹𝑈)
1814simprd 495 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → ((𝑂𝐹)‘𝑥) = 0 )
1917, 18jca 511 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → (𝐹𝑈 ∧ ((𝑂𝐹)‘𝑥) = 0 ))
20 ply1mulrtss.g . . . . . . . . . 10 (𝜑𝐺𝑈)
2120adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → 𝐺𝑈)
22 eqidd 2730 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑥))
2321, 22jca 511 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → (𝐺𝑈 ∧ ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑥)))
24 ply1mulrtss.1 . . . . . . . 8 · = (.r𝑃)
25 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
261, 2, 5, 3, 16, 15, 19, 23, 24, 25evl1muld 22206 . . . . . . 7 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → ((𝐹 · 𝐺) ∈ 𝑈 ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r𝑅)((𝑂𝐺)‘𝑥))))
2726simprd 495 . . . . . 6 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r𝑅)((𝑂𝐺)‘𝑥)))
28 ply1dg1rt.0 . . . . . . 7 0 = (0g𝑅)
2916crngringd 20131 . . . . . . 7 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → 𝑅 ∈ Ring)
301, 2, 5, 3, 16, 15, 21fveval1fvcl 22196 . . . . . . 7 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → ((𝑂𝐺)‘𝑥) ∈ (Base‘𝑅))
315, 25, 28, 29, 30ringlzd 20180 . . . . . 6 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → ( 0 (.r𝑅)((𝑂𝐺)‘𝑥)) = 0 )
3227, 31eqtrd 2764 . . . . 5 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )
3315, 32jca 511 . . . 4 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 ))
34 rabid 3424 . . . . 5 (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 ))
352ply1crng 22059 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
364, 35syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ CRing)
3736crngringd 20131 . . . . . . . . . . 11 (𝜑𝑃 ∈ Ring)
383, 24, 37, 6, 20ringcld 20145 . . . . . . . . . 10 (𝜑 → (𝐹 · 𝐺) ∈ 𝑈)
391, 2, 3, 4, 5, 38evl1fvf 33505 . . . . . . . . 9 (𝜑 → (𝑂‘(𝐹 · 𝐺)):(Base‘𝑅)⟶(Base‘𝑅))
4039ffnd 6671 . . . . . . . 8 (𝜑 → (𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅))
41 fniniseg2 7016 . . . . . . . 8 ((𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅) → ((𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 })
4240, 41syl 17 . . . . . . 7 (𝜑 → ((𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 })
4342eleq2d 2814 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝑂‘(𝐹 · 𝐺)) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }))
4443biimpar 477 . . . . 5 ((𝜑𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) → 𝑥 ∈ ((𝑂‘(𝐹 · 𝐺)) “ { 0 }))
4534, 44sylan2br 595 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) → 𝑥 ∈ ((𝑂‘(𝐹 · 𝐺)) “ { 0 }))
4633, 45syldan 591 . . 3 ((𝜑𝑥 ∈ ((𝑂𝐹) “ { 0 })) → 𝑥 ∈ ((𝑂‘(𝐹 · 𝐺)) “ { 0 }))
4746ex 412 . 2 (𝜑 → (𝑥 ∈ ((𝑂𝐹) “ { 0 }) → 𝑥 ∈ ((𝑂‘(𝐹 · 𝐺)) “ { 0 })))
4847ssrdv 3949 1 (𝜑 → ((𝑂𝐹) “ { 0 }) ⊆ ((𝑂‘(𝐹 · 𝐺)) “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  wss 3911  {csn 4585  ccnv 5630  cima 5634   Fn wfn 6494  cfv 6499  (class class class)co 7369  Basecbs 17155  .rcmulr 17197  0gc0g 17378  CRingccrg 20119  Poly1cpl1 22037  eval1ce1 22177  deg1cdg1 25935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-lsp 20854  df-assa 21738  df-asp 21739  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-evls 21957  df-evl 21958  df-psr1 22040  df-ply1 22042  df-evl1 22179
This theorem is referenced by:  ply1dg3rt0irred  33524
  Copyright terms: Public domain W3C validator