![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1mulrtss | Structured version Visualization version GIF version |
Description: The roots of a factor 𝐹 are also roots of the product of polynomials (𝐹 · 𝐺). (Contributed by Thierry Arnoux, 8-Jun-2025.) |
Ref | Expression |
---|---|
ply1dg1rt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1dg1rt.u | ⊢ 𝑈 = (Base‘𝑃) |
ply1dg1rt.o | ⊢ 𝑂 = (eval1‘𝑅) |
ply1dg1rt.d | ⊢ 𝐷 = (deg1‘𝑅) |
ply1dg1rt.0 | ⊢ 0 = (0g‘𝑅) |
ply1mulrtss.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
ply1mulrtss.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
ply1mulrtss.g | ⊢ (𝜑 → 𝐺 ∈ 𝑈) |
ply1mulrtss.1 | ⊢ · = (.r‘𝑃) |
Ref | Expression |
---|---|
ply1mulrtss | ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1dg1rt.o | . . . . . . . . . . . 12 ⊢ 𝑂 = (eval1‘𝑅) | |
2 | ply1dg1rt.p | . . . . . . . . . . . 12 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | ply1dg1rt.u | . . . . . . . . . . . 12 ⊢ 𝑈 = (Base‘𝑃) | |
4 | ply1mulrtss.r | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | eqid 2726 | . . . . . . . . . . . 12 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | ply1mulrtss.f | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | evl1fvf 33441 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑂‘𝐹):(Base‘𝑅)⟶(Base‘𝑅)) |
8 | 7 | ffnd 6720 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑂‘𝐹) Fn (Base‘𝑅)) |
9 | fniniseg2 7066 | . . . . . . . . . 10 ⊢ ((𝑂‘𝐹) Fn (Base‘𝑅) → (◡(𝑂‘𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) | |
10 | 8, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) |
11 | 10 | eleq2d 2812 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 })) |
12 | 11 | biimpa 475 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) |
13 | rabid 3441 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) | |
14 | 12, 13 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) |
15 | 14 | simpld 493 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ (Base‘𝑅)) |
16 | 4 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑅 ∈ CRing) |
17 | 6 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝐹 ∈ 𝑈) |
18 | 14 | simprd 494 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐹)‘𝑥) = 0 ) |
19 | 17, 18 | jca 510 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝐹 ∈ 𝑈 ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) |
20 | ply1mulrtss.g | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ 𝑈) | |
21 | 20 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝐺 ∈ 𝑈) |
22 | eqidd 2727 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑥)) | |
23 | 21, 22 | jca 510 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝐺 ∈ 𝑈 ∧ ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑥))) |
24 | ply1mulrtss.1 | . . . . . . . 8 ⊢ · = (.r‘𝑃) | |
25 | eqid 2726 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
26 | 1, 2, 5, 3, 16, 15, 19, 23, 24, 25 | evl1muld 22330 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝐹 · 𝐺) ∈ 𝑈 ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥)))) |
27 | 26 | simprd 494 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥))) |
28 | ply1dg1rt.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
29 | 16 | crngringd 20224 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑅 ∈ Ring) |
30 | 1, 2, 5, 3, 16, 15, 21 | fveval1fvcl 22320 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐺)‘𝑥) ∈ (Base‘𝑅)) |
31 | 5, 25, 28, 29, 30 | ringlzd 20269 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥)) = 0 ) |
32 | 27, 31 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 ) |
33 | 15, 32 | jca 510 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) |
34 | rabid 3441 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) | |
35 | 2 | ply1crng 22183 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
36 | 4, 35 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑃 ∈ CRing) |
37 | 36 | crngringd 20224 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ Ring) |
38 | 3, 24, 37, 6, 20 | ringcld 20237 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝑈) |
39 | 1, 2, 3, 4, 5, 38 | evl1fvf 33441 | . . . . . . . . 9 ⊢ (𝜑 → (𝑂‘(𝐹 · 𝐺)):(Base‘𝑅)⟶(Base‘𝑅)) |
40 | 39 | ffnd 6720 | . . . . . . . 8 ⊢ (𝜑 → (𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅)) |
41 | fniniseg2 7066 | . . . . . . . 8 ⊢ ((𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅) → (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) | |
42 | 40, 41 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) |
43 | 42 | eleq2d 2812 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 })) |
44 | 43 | biimpar 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
45 | 34, 44 | sylan2br 593 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
46 | 33, 45 | syldan 589 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
47 | 46 | ex 411 | . 2 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 }) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }))) |
48 | 47 | ssrdv 3986 | 1 ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3420 ⊆ wss 3948 {csn 4625 ◡ccnv 5673 “ cima 5677 Fn wfn 6540 ‘cfv 6545 (class class class)co 7415 Basecbs 17207 .rcmulr 17261 0gc0g 17448 CRingccrg 20212 Poly1cpl1 22161 eval1ce1 22301 deg1cdg1 26074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4908 df-int 4949 df-iun 4997 df-iin 4998 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-isom 6554 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-ofr 7682 df-om 7868 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8848 df-pm 8849 df-ixp 8918 df-en 8966 df-dom 8967 df-sdom 8968 df-fin 8969 df-fsupp 9398 df-sup 9477 df-oi 9545 df-card 9974 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-7 12325 df-8 12326 df-9 12327 df-n0 12518 df-z 12604 df-dec 12723 df-uz 12868 df-fz 13532 df-fzo 13675 df-seq 14015 df-hash 14342 df-struct 17143 df-sets 17160 df-slot 17178 df-ndx 17190 df-base 17208 df-ress 17237 df-plusg 17273 df-mulr 17274 df-sca 17276 df-vsca 17277 df-ip 17278 df-tset 17279 df-ple 17280 df-ds 17282 df-hom 17284 df-cco 17285 df-0g 17450 df-gsum 17451 df-prds 17456 df-pws 17458 df-mre 17593 df-mrc 17594 df-acs 17596 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-mhm 18767 df-submnd 18768 df-grp 18925 df-minusg 18926 df-sbg 18927 df-mulg 19057 df-subg 19112 df-ghm 19202 df-cntz 19306 df-cmn 19775 df-abl 19776 df-mgp 20113 df-rng 20131 df-ur 20160 df-srg 20165 df-ring 20213 df-cring 20214 df-rhm 20449 df-subrng 20523 df-subrg 20548 df-lmod 20833 df-lss 20904 df-lsp 20944 df-assa 21846 df-asp 21847 df-ascl 21848 df-psr 21901 df-mvr 21902 df-mpl 21903 df-opsr 21905 df-evls 22082 df-evl 22083 df-psr1 22164 df-ply1 22166 df-evl1 22303 |
This theorem is referenced by: ply1dg3rt0irred 33459 |
Copyright terms: Public domain | W3C validator |