![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1mulrtss | Structured version Visualization version GIF version |
Description: The roots of a factor 𝐹 are also roots of the product of polynomials (𝐹 · 𝐺). (Contributed by Thierry Arnoux, 8-Jun-2025.) |
Ref | Expression |
---|---|
ply1dg1rt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1dg1rt.u | ⊢ 𝑈 = (Base‘𝑃) |
ply1dg1rt.o | ⊢ 𝑂 = (eval1‘𝑅) |
ply1dg1rt.d | ⊢ 𝐷 = (deg1‘𝑅) |
ply1dg1rt.0 | ⊢ 0 = (0g‘𝑅) |
ply1mulrtss.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
ply1mulrtss.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
ply1mulrtss.g | ⊢ (𝜑 → 𝐺 ∈ 𝑈) |
ply1mulrtss.1 | ⊢ · = (.r‘𝑃) |
Ref | Expression |
---|---|
ply1mulrtss | ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1dg1rt.o | . . . . . . . . . . . 12 ⊢ 𝑂 = (eval1‘𝑅) | |
2 | ply1dg1rt.p | . . . . . . . . . . . 12 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | ply1dg1rt.u | . . . . . . . . . . . 12 ⊢ 𝑈 = (Base‘𝑃) | |
4 | ply1mulrtss.r | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | eqid 2740 | . . . . . . . . . . . 12 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | ply1mulrtss.f | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | evl1fvf 33554 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑂‘𝐹):(Base‘𝑅)⟶(Base‘𝑅)) |
8 | 7 | ffnd 6748 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑂‘𝐹) Fn (Base‘𝑅)) |
9 | fniniseg2 7095 | . . . . . . . . . 10 ⊢ ((𝑂‘𝐹) Fn (Base‘𝑅) → (◡(𝑂‘𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) | |
10 | 8, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) |
11 | 10 | eleq2d 2830 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 })) |
12 | 11 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) |
13 | rabid 3465 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) | |
14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) |
15 | 14 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ (Base‘𝑅)) |
16 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑅 ∈ CRing) |
17 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝐹 ∈ 𝑈) |
18 | 14 | simprd 495 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐹)‘𝑥) = 0 ) |
19 | 17, 18 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝐹 ∈ 𝑈 ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) |
20 | ply1mulrtss.g | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ 𝑈) | |
21 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝐺 ∈ 𝑈) |
22 | eqidd 2741 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑥)) | |
23 | 21, 22 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝐺 ∈ 𝑈 ∧ ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑥))) |
24 | ply1mulrtss.1 | . . . . . . . 8 ⊢ · = (.r‘𝑃) | |
25 | eqid 2740 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
26 | 1, 2, 5, 3, 16, 15, 19, 23, 24, 25 | evl1muld 22368 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝐹 · 𝐺) ∈ 𝑈 ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥)))) |
27 | 26 | simprd 495 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥))) |
28 | ply1dg1rt.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
29 | 16 | crngringd 20273 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑅 ∈ Ring) |
30 | 1, 2, 5, 3, 16, 15, 21 | fveval1fvcl 22358 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐺)‘𝑥) ∈ (Base‘𝑅)) |
31 | 5, 25, 28, 29, 30 | ringlzd 20318 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥)) = 0 ) |
32 | 27, 31 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 ) |
33 | 15, 32 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) |
34 | rabid 3465 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) | |
35 | 2 | ply1crng 22221 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
36 | 4, 35 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑃 ∈ CRing) |
37 | 36 | crngringd 20273 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ Ring) |
38 | 3, 24, 37, 6, 20 | ringcld 20286 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝑈) |
39 | 1, 2, 3, 4, 5, 38 | evl1fvf 33554 | . . . . . . . . 9 ⊢ (𝜑 → (𝑂‘(𝐹 · 𝐺)):(Base‘𝑅)⟶(Base‘𝑅)) |
40 | 39 | ffnd 6748 | . . . . . . . 8 ⊢ (𝜑 → (𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅)) |
41 | fniniseg2 7095 | . . . . . . . 8 ⊢ ((𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅) → (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) | |
42 | 40, 41 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) |
43 | 42 | eleq2d 2830 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 })) |
44 | 43 | biimpar 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
45 | 34, 44 | sylan2br 594 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
46 | 33, 45 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
47 | 46 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 }) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }))) |
48 | 47 | ssrdv 4014 | 1 ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 {csn 4648 ◡ccnv 5699 “ cima 5703 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 CRingccrg 20261 Poly1cpl1 22199 eval1ce1 22339 deg1cdg1 26113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-assa 21896 df-asp 21897 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-evls 22121 df-evl 22122 df-psr1 22202 df-ply1 22204 df-evl1 22341 |
This theorem is referenced by: ply1dg3rt0irred 33572 |
Copyright terms: Public domain | W3C validator |