| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1mulrtss | Structured version Visualization version GIF version | ||
| Description: The roots of a factor 𝐹 are also roots of the product of polynomials (𝐹 · 𝐺). (Contributed by Thierry Arnoux, 8-Jun-2025.) |
| Ref | Expression |
|---|---|
| ply1dg1rt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1dg1rt.u | ⊢ 𝑈 = (Base‘𝑃) |
| ply1dg1rt.o | ⊢ 𝑂 = (eval1‘𝑅) |
| ply1dg1rt.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ply1dg1rt.0 | ⊢ 0 = (0g‘𝑅) |
| ply1mulrtss.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| ply1mulrtss.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| ply1mulrtss.g | ⊢ (𝜑 → 𝐺 ∈ 𝑈) |
| ply1mulrtss.1 | ⊢ · = (.r‘𝑃) |
| Ref | Expression |
|---|---|
| ply1mulrtss | ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1dg1rt.o | . . . . . . . . . . . 12 ⊢ 𝑂 = (eval1‘𝑅) | |
| 2 | ply1dg1rt.p | . . . . . . . . . . . 12 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | ply1dg1rt.u | . . . . . . . . . . . 12 ⊢ 𝑈 = (Base‘𝑃) | |
| 4 | ply1mulrtss.r | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 5 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | ply1mulrtss.f | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 7 | 1, 2, 3, 4, 5, 6 | evl1fvf 33532 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑂‘𝐹):(Base‘𝑅)⟶(Base‘𝑅)) |
| 8 | 7 | ffnd 6689 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑂‘𝐹) Fn (Base‘𝑅)) |
| 9 | fniniseg2 7034 | . . . . . . . . . 10 ⊢ ((𝑂‘𝐹) Fn (Base‘𝑅) → (◡(𝑂‘𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) | |
| 10 | 8, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) |
| 11 | 10 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 })) |
| 12 | 11 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) |
| 13 | rabid 3427 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) | |
| 14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) |
| 15 | 14 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ (Base‘𝑅)) |
| 16 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑅 ∈ CRing) |
| 17 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝐹 ∈ 𝑈) |
| 18 | 14 | simprd 495 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐹)‘𝑥) = 0 ) |
| 19 | 17, 18 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝐹 ∈ 𝑈 ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) |
| 20 | ply1mulrtss.g | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ 𝑈) | |
| 21 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝐺 ∈ 𝑈) |
| 22 | eqidd 2730 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑥)) | |
| 23 | 21, 22 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝐺 ∈ 𝑈 ∧ ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑥))) |
| 24 | ply1mulrtss.1 | . . . . . . . 8 ⊢ · = (.r‘𝑃) | |
| 25 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 26 | 1, 2, 5, 3, 16, 15, 19, 23, 24, 25 | evl1muld 22230 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝐹 · 𝐺) ∈ 𝑈 ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥)))) |
| 27 | 26 | simprd 495 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥))) |
| 28 | ply1dg1rt.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 29 | 16 | crngringd 20155 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑅 ∈ Ring) |
| 30 | 1, 2, 5, 3, 16, 15, 21 | fveval1fvcl 22220 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐺)‘𝑥) ∈ (Base‘𝑅)) |
| 31 | 5, 25, 28, 29, 30 | ringlzd 20204 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥)) = 0 ) |
| 32 | 27, 31 | eqtrd 2764 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 ) |
| 33 | 15, 32 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) |
| 34 | rabid 3427 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) | |
| 35 | 2 | ply1crng 22083 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 36 | 4, 35 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑃 ∈ CRing) |
| 37 | 36 | crngringd 20155 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 38 | 3, 24, 37, 6, 20 | ringcld 20169 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝑈) |
| 39 | 1, 2, 3, 4, 5, 38 | evl1fvf 33532 | . . . . . . . . 9 ⊢ (𝜑 → (𝑂‘(𝐹 · 𝐺)):(Base‘𝑅)⟶(Base‘𝑅)) |
| 40 | 39 | ffnd 6689 | . . . . . . . 8 ⊢ (𝜑 → (𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅)) |
| 41 | fniniseg2 7034 | . . . . . . . 8 ⊢ ((𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅) → (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) | |
| 42 | 40, 41 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) |
| 43 | 42 | eleq2d 2814 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 })) |
| 44 | 43 | biimpar 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
| 45 | 34, 44 | sylan2br 595 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
| 46 | 33, 45 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
| 47 | 46 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 }) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }))) |
| 48 | 47 | ssrdv 3952 | 1 ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 {csn 4589 ◡ccnv 5637 “ cima 5641 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 0gc0g 17402 CRingccrg 20143 Poly1cpl1 22061 eval1ce1 22201 deg1cdg1 25959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-evl 21982 df-psr1 22064 df-ply1 22066 df-evl1 22203 |
| This theorem is referenced by: ply1dg3rt0irred 33551 |
| Copyright terms: Public domain | W3C validator |