![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1mulrtss | Structured version Visualization version GIF version |
Description: The roots of a factor 𝐹 are also roots of the product of polynomials (𝐹 · 𝐺). (Contributed by Thierry Arnoux, 8-Jun-2025.) |
Ref | Expression |
---|---|
ply1dg1rt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1dg1rt.u | ⊢ 𝑈 = (Base‘𝑃) |
ply1dg1rt.o | ⊢ 𝑂 = (eval1‘𝑅) |
ply1dg1rt.d | ⊢ 𝐷 = (deg1‘𝑅) |
ply1dg1rt.0 | ⊢ 0 = (0g‘𝑅) |
ply1mulrtss.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
ply1mulrtss.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
ply1mulrtss.g | ⊢ (𝜑 → 𝐺 ∈ 𝑈) |
ply1mulrtss.1 | ⊢ · = (.r‘𝑃) |
Ref | Expression |
---|---|
ply1mulrtss | ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1dg1rt.o | . . . . . . . . . . . 12 ⊢ 𝑂 = (eval1‘𝑅) | |
2 | ply1dg1rt.p | . . . . . . . . . . . 12 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | ply1dg1rt.u | . . . . . . . . . . . 12 ⊢ 𝑈 = (Base‘𝑃) | |
4 | ply1mulrtss.r | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | eqid 2735 | . . . . . . . . . . . 12 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | ply1mulrtss.f | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | evl1fvf 33569 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑂‘𝐹):(Base‘𝑅)⟶(Base‘𝑅)) |
8 | 7 | ffnd 6738 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑂‘𝐹) Fn (Base‘𝑅)) |
9 | fniniseg2 7082 | . . . . . . . . . 10 ⊢ ((𝑂‘𝐹) Fn (Base‘𝑅) → (◡(𝑂‘𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) | |
10 | 8, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) |
11 | 10 | eleq2d 2825 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 })) |
12 | 11 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 }) |
13 | rabid 3455 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐹)‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) | |
14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) |
15 | 14 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ (Base‘𝑅)) |
16 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑅 ∈ CRing) |
17 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝐹 ∈ 𝑈) |
18 | 14 | simprd 495 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐹)‘𝑥) = 0 ) |
19 | 17, 18 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝐹 ∈ 𝑈 ∧ ((𝑂‘𝐹)‘𝑥) = 0 )) |
20 | ply1mulrtss.g | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ 𝑈) | |
21 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝐺 ∈ 𝑈) |
22 | eqidd 2736 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑥)) | |
23 | 21, 22 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝐺 ∈ 𝑈 ∧ ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑥))) |
24 | ply1mulrtss.1 | . . . . . . . 8 ⊢ · = (.r‘𝑃) | |
25 | eqid 2735 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
26 | 1, 2, 5, 3, 16, 15, 19, 23, 24, 25 | evl1muld 22363 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝐹 · 𝐺) ∈ 𝑈 ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥)))) |
27 | 26 | simprd 495 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥))) |
28 | ply1dg1rt.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
29 | 16 | crngringd 20264 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑅 ∈ Ring) |
30 | 1, 2, 5, 3, 16, 15, 21 | fveval1fvcl 22353 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘𝐺)‘𝑥) ∈ (Base‘𝑅)) |
31 | 5, 25, 28, 29, 30 | ringlzd 20309 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ( 0 (.r‘𝑅)((𝑂‘𝐺)‘𝑥)) = 0 ) |
32 | 27, 31 | eqtrd 2775 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 ) |
33 | 15, 32 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) |
34 | rabid 3455 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 } ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) | |
35 | 2 | ply1crng 22216 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
36 | 4, 35 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑃 ∈ CRing) |
37 | 36 | crngringd 20264 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ Ring) |
38 | 3, 24, 37, 6, 20 | ringcld 20277 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝑈) |
39 | 1, 2, 3, 4, 5, 38 | evl1fvf 33569 | . . . . . . . . 9 ⊢ (𝜑 → (𝑂‘(𝐹 · 𝐺)):(Base‘𝑅)⟶(Base‘𝑅)) |
40 | 39 | ffnd 6738 | . . . . . . . 8 ⊢ (𝜑 → (𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅)) |
41 | fniniseg2 7082 | . . . . . . . 8 ⊢ ((𝑂‘(𝐹 · 𝐺)) Fn (Base‘𝑅) → (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) | |
42 | 40, 41 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) |
43 | 42 | eleq2d 2825 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }) ↔ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 })) |
44 | 43 | biimpar 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 }) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
45 | 34, 44 | sylan2br 595 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘(𝐹 · 𝐺))‘𝑥) = 0 )) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
46 | 33, 45 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 })) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
47 | 46 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ (◡(𝑂‘𝐹) “ { 0 }) → 𝑥 ∈ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 }))) |
48 | 47 | ssrdv 4001 | 1 ⊢ (𝜑 → (◡(𝑂‘𝐹) “ { 0 }) ⊆ (◡(𝑂‘(𝐹 · 𝐺)) “ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 {csn 4631 ◡ccnv 5688 “ cima 5692 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 .rcmulr 17299 0gc0g 17486 CRingccrg 20252 Poly1cpl1 22194 eval1ce1 22334 deg1cdg1 26108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-evls 22116 df-evl 22117 df-psr1 22197 df-ply1 22199 df-evl1 22336 |
This theorem is referenced by: ply1dg3rt0irred 33587 |
Copyright terms: Public domain | W3C validator |