| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1dg1rtn0 | Structured version Visualization version GIF version | ||
| Description: Polynomials of degree 1 over a field always have some roots. (Contributed by Thierry Arnoux, 8-Jun-2025.) |
| Ref | Expression |
|---|---|
| ply1dg1rt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1dg1rt.u | ⊢ 𝑈 = (Base‘𝑃) |
| ply1dg1rt.o | ⊢ 𝑂 = (eval1‘𝑅) |
| ply1dg1rt.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ply1dg1rt.0 | ⊢ 0 = (0g‘𝑅) |
| ply1dg1rtn0.r | ⊢ (𝜑 → 𝑅 ∈ Field) |
| ply1dg1rtn0.g | ⊢ (𝜑 → 𝐺 ∈ 𝑈) |
| ply1dg1rtn0.1 | ⊢ (𝜑 → (𝐷‘𝐺) = 1) |
| Ref | Expression |
|---|---|
| ply1dg1rtn0 | ⊢ (𝜑 → (◡(𝑂‘𝐺) “ { 0 }) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7373 | . . . 4 ⊢ (((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1)) ∈ V | |
| 2 | 1 | snid 4612 | . . 3 ⊢ (((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1)) ∈ {(((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1))} |
| 3 | ply1dg1rt.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | ply1dg1rt.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 5 | ply1dg1rt.o | . . . 4 ⊢ 𝑂 = (eval1‘𝑅) | |
| 6 | ply1dg1rt.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 7 | ply1dg1rt.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 8 | ply1dg1rtn0.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Field) | |
| 9 | ply1dg1rtn0.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑈) | |
| 10 | ply1dg1rtn0.1 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) = 1) | |
| 11 | eqid 2729 | . . . 4 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 12 | eqid 2729 | . . . 4 ⊢ (/r‘𝑅) = (/r‘𝑅) | |
| 13 | eqid 2729 | . . . 4 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
| 14 | eqid 2729 | . . . 4 ⊢ ((coe1‘𝐺)‘1) = ((coe1‘𝐺)‘1) | |
| 15 | eqid 2729 | . . . 4 ⊢ ((coe1‘𝐺)‘0) = ((coe1‘𝐺)‘0) | |
| 16 | eqid 2729 | . . . 4 ⊢ (((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1)) = (((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1)) | |
| 17 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | ply1dg1rt 33511 | . . 3 ⊢ (𝜑 → (◡(𝑂‘𝐺) “ { 0 }) = {(((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1))}) |
| 18 | 2, 17 | eleqtrrid 2835 | . 2 ⊢ (𝜑 → (((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1)) ∈ (◡(𝑂‘𝐺) “ { 0 })) |
| 19 | 18 | ne0d 4289 | 1 ⊢ (𝜑 → (◡(𝑂‘𝐺) “ { 0 }) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4280 {csn 4573 ◡ccnv 5612 “ cima 5616 ‘cfv 6476 (class class class)co 7340 0cc0 10997 1c1 10998 Basecbs 17107 0gc0g 17330 invgcminusg 18800 /rcdvr 20272 Fieldcfield 20599 Poly1cpl1 22043 coe1cco1 22044 eval1ce1 22183 deg1cdg1 25940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 ax-pre-sup 11075 ax-addf 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-iin 4941 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-se 5567 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-of 7604 df-ofr 7605 df-om 7791 df-1st 7915 df-2nd 7916 df-supp 8085 df-tpos 8150 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-2o 8380 df-er 8616 df-map 8746 df-pm 8747 df-ixp 8816 df-en 8864 df-dom 8865 df-sdom 8866 df-fin 8867 df-fsupp 9240 df-sup 9320 df-oi 9390 df-card 9823 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-nn 12117 df-2 12179 df-3 12180 df-4 12181 df-5 12182 df-6 12183 df-7 12184 df-8 12185 df-9 12186 df-n0 12373 df-z 12460 df-dec 12580 df-uz 12724 df-fz 13399 df-fzo 13546 df-seq 13897 df-hash 14226 df-struct 17045 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17108 df-ress 17129 df-plusg 17161 df-mulr 17162 df-starv 17163 df-sca 17164 df-vsca 17165 df-ip 17166 df-tset 17167 df-ple 17168 df-ds 17170 df-unif 17171 df-hom 17172 df-cco 17173 df-0g 17332 df-gsum 17333 df-prds 17338 df-pws 17340 df-mre 17475 df-mrc 17476 df-acs 17478 df-mgm 18501 df-sgrp 18580 df-mnd 18596 df-mhm 18644 df-submnd 18645 df-grp 18802 df-minusg 18803 df-sbg 18804 df-mulg 18934 df-subg 18989 df-ghm 19079 df-cntz 19183 df-cmn 19648 df-abl 19649 df-mgp 20013 df-rng 20025 df-ur 20054 df-srg 20059 df-ring 20107 df-cring 20108 df-oppr 20209 df-dvdsr 20229 df-unit 20230 df-invr 20260 df-dvr 20273 df-rhm 20344 df-nzr 20382 df-subrng 20415 df-subrg 20439 df-rlreg 20563 df-domn 20564 df-drng 20600 df-field 20601 df-lmod 20749 df-lss 20819 df-lsp 20859 df-cnfld 21246 df-assa 21744 df-asp 21745 df-ascl 21746 df-psr 21800 df-mvr 21801 df-mpl 21802 df-opsr 21804 df-evls 21963 df-evl 21964 df-psr1 22046 df-vr1 22047 df-ply1 22048 df-coe1 22049 df-evls1 22184 df-evl1 22185 df-mdeg 25941 df-deg1 25942 |
| This theorem is referenced by: ply1dg3rt0irred 33514 |
| Copyright terms: Public domain | W3C validator |