| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1dg1rtn0 | Structured version Visualization version GIF version | ||
| Description: Polynomials of degree 1 over a field always have some roots. (Contributed by Thierry Arnoux, 8-Jun-2025.) |
| Ref | Expression |
|---|---|
| ply1dg1rt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1dg1rt.u | ⊢ 𝑈 = (Base‘𝑃) |
| ply1dg1rt.o | ⊢ 𝑂 = (eval1‘𝑅) |
| ply1dg1rt.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ply1dg1rt.0 | ⊢ 0 = (0g‘𝑅) |
| ply1dg1rtn0.r | ⊢ (𝜑 → 𝑅 ∈ Field) |
| ply1dg1rtn0.g | ⊢ (𝜑 → 𝐺 ∈ 𝑈) |
| ply1dg1rtn0.1 | ⊢ (𝜑 → (𝐷‘𝐺) = 1) |
| Ref | Expression |
|---|---|
| ply1dg1rtn0 | ⊢ (𝜑 → (◡(𝑂‘𝐺) “ { 0 }) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7385 | . . . 4 ⊢ (((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1)) ∈ V | |
| 2 | 1 | snid 4614 | . . 3 ⊢ (((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1)) ∈ {(((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1))} |
| 3 | ply1dg1rt.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | ply1dg1rt.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 5 | ply1dg1rt.o | . . . 4 ⊢ 𝑂 = (eval1‘𝑅) | |
| 6 | ply1dg1rt.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 7 | ply1dg1rt.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 8 | ply1dg1rtn0.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Field) | |
| 9 | ply1dg1rtn0.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑈) | |
| 10 | ply1dg1rtn0.1 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) = 1) | |
| 11 | eqid 2731 | . . . 4 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 12 | eqid 2731 | . . . 4 ⊢ (/r‘𝑅) = (/r‘𝑅) | |
| 13 | eqid 2731 | . . . 4 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
| 14 | eqid 2731 | . . . 4 ⊢ ((coe1‘𝐺)‘1) = ((coe1‘𝐺)‘1) | |
| 15 | eqid 2731 | . . . 4 ⊢ ((coe1‘𝐺)‘0) = ((coe1‘𝐺)‘0) | |
| 16 | eqid 2731 | . . . 4 ⊢ (((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1)) = (((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1)) | |
| 17 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | ply1dg1rt 33550 | . . 3 ⊢ (𝜑 → (◡(𝑂‘𝐺) “ { 0 }) = {(((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1))}) |
| 18 | 2, 17 | eleqtrrid 2838 | . 2 ⊢ (𝜑 → (((invg‘𝑅)‘((coe1‘𝐺)‘0))(/r‘𝑅)((coe1‘𝐺)‘1)) ∈ (◡(𝑂‘𝐺) “ { 0 })) |
| 19 | 18 | ne0d 4291 | 1 ⊢ (𝜑 → (◡(𝑂‘𝐺) “ { 0 }) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4282 {csn 4575 ◡ccnv 5618 “ cima 5622 ‘cfv 6487 (class class class)co 7352 0cc0 11012 1c1 11013 Basecbs 17126 0gc0g 17349 invgcminusg 18853 /rcdvr 20324 Fieldcfield 20651 Poly1cpl1 22095 coe1cco1 22096 eval1ce1 22235 deg1cdg1 25992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-fzo 13561 df-seq 13915 df-hash 14244 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-hom 17191 df-cco 17192 df-0g 17351 df-gsum 17352 df-prds 17357 df-pws 17359 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18987 df-subg 19042 df-ghm 19131 df-cntz 19235 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-srg 20111 df-ring 20159 df-cring 20160 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-dvr 20325 df-rhm 20396 df-nzr 20434 df-subrng 20467 df-subrg 20491 df-rlreg 20615 df-domn 20616 df-drng 20652 df-field 20653 df-lmod 20801 df-lss 20871 df-lsp 20911 df-cnfld 21298 df-assa 21796 df-asp 21797 df-ascl 21798 df-psr 21852 df-mvr 21853 df-mpl 21854 df-opsr 21856 df-evls 22015 df-evl 22016 df-psr1 22098 df-vr1 22099 df-ply1 22100 df-coe1 22101 df-evls1 22236 df-evl1 22237 df-mdeg 25993 df-deg1 25994 |
| This theorem is referenced by: ply1dg3rt0irred 33553 |
| Copyright terms: Public domain | W3C validator |