MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadumatpoly Structured version   Visualization version   GIF version

Theorem cpmadumatpoly 22879
Description: The product of the characteristic matrix of a given matrix and its adjunct represented as a polynomial over matrices. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
cpmadumatpoly.a 𝐴 = (𝑁 Mat 𝑅)
cpmadumatpoly.b 𝐵 = (Base‘𝐴)
cpmadumatpoly.p 𝑃 = (Poly1𝑅)
cpmadumatpoly.y 𝑌 = (𝑁 Mat 𝑃)
cpmadumatpoly.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadumatpoly.r × = (.r𝑌)
cpmadumatpoly.m0 = (-g𝑌)
cpmadumatpoly.0 0 = (0g𝑌)
cpmadumatpoly.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cpmadumatpoly.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmadumatpoly.m1 · = ( ·𝑠𝑌)
cpmadumatpoly.1 1 = (1r𝑌)
cpmadumatpoly.z 𝑍 = (var1𝑅)
cpmadumatpoly.d 𝐷 = ((𝑍 · 1 ) (𝑇𝑀))
cpmadumatpoly.j 𝐽 = (𝑁 maAdju 𝑃)
cpmadumatpoly.w 𝑊 = (Base‘𝑌)
cpmadumatpoly.q 𝑄 = (Poly1𝐴)
cpmadumatpoly.x 𝑋 = (var1𝐴)
cpmadumatpoly.m2 = ( ·𝑠𝑄)
cpmadumatpoly.e = (.g‘(mulGrp‘𝑄))
cpmadumatpoly.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
cpmadumatpoly.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
cpmadumatpoly ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑆,𝑛   𝑛,𝑌,𝑏,𝑠   𝐴,𝑏,𝑠,𝑛   𝐵,𝑏,𝑠   𝐷,𝑏,𝑠,𝑛   𝑛,𝐺   𝑛,𝐼   𝐽,𝑏,𝑠,𝑛   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑛,𝑏,𝑠   𝑅,𝑏,𝑠   𝑇,𝑏,𝑠,𝑛   𝑈,𝑛   𝑛,𝑊   𝑌,𝑏,𝑠   𝑍,𝑏,𝑠,𝑛   × ,𝑛   · ,𝑏,𝑠,𝑛   1 ,𝑛   0 ,𝑛   ,𝑛
Allowed substitution hints:   𝑄(𝑛,𝑠,𝑏)   𝑆(𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑠,𝑏)   𝐼(𝑠,𝑏)   (𝑛,𝑠,𝑏)   (𝑠,𝑏)   𝑊(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem cpmadumatpoly
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cpmadumatpoly.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cpmadumatpoly.b . . 3 𝐵 = (Base‘𝐴)
3 cpmadumatpoly.p . . 3 𝑃 = (Poly1𝑅)
4 cpmadumatpoly.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cpmadumatpoly.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
6 cpmadumatpoly.z . . 3 𝑍 = (var1𝑅)
7 eqid 2726 . . 3 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
8 cpmadumatpoly.m1 . . 3 · = ( ·𝑠𝑌)
9 cpmadumatpoly.r . . 3 × = (.r𝑌)
10 cpmadumatpoly.1 . . 3 1 = (1r𝑌)
11 eqid 2726 . . 3 (+g𝑌) = (+g𝑌)
12 cpmadumatpoly.m0 . . 3 = (-g𝑌)
13 cpmadumatpoly.d . . 3 𝐷 = ((𝑍 · 1 ) (𝑇𝑀))
14 cpmadumatpoly.j . . 3 𝐽 = (𝑁 maAdju 𝑃)
15 cpmadumatpoly.0 . . 3 0 = (0g𝑌)
16 cpmadumatpoly.g . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
17 eqeq1 2730 . . . . . 6 (𝑛 = 𝑧 → (𝑛 = 0 ↔ 𝑧 = 0))
18 eqeq1 2730 . . . . . . 7 (𝑛 = 𝑧 → (𝑛 = (𝑠 + 1) ↔ 𝑧 = (𝑠 + 1)))
19 breq2 5159 . . . . . . . 8 (𝑛 = 𝑧 → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝑧))
20 fvoveq1 7449 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝑏‘(𝑛 − 1)) = (𝑏‘(𝑧 − 1)))
2120fveq2d 6907 . . . . . . . . 9 (𝑛 = 𝑧 → (𝑇‘(𝑏‘(𝑛 − 1))) = (𝑇‘(𝑏‘(𝑧 − 1))))
22 2fveq3 6908 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝑇‘(𝑏𝑛)) = (𝑇‘(𝑏𝑧)))
2322oveq2d 7442 . . . . . . . . 9 (𝑛 = 𝑧 → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) = ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))
2421, 23oveq12d 7444 . . . . . . . 8 (𝑛 = 𝑧 → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) = ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧)))))
2519, 24ifbieq2d 4559 . . . . . . 7 (𝑛 = 𝑧 → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) = if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))
2618, 25ifbieq2d 4559 . . . . . 6 (𝑛 = 𝑧 → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧)))))))
2717, 26ifbieq2d 4559 . . . . 5 (𝑛 = 𝑧 → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = if(𝑧 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))))
2827cbvmptv 5268 . . . 4 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))))) = (𝑧 ∈ ℕ0 ↦ if(𝑧 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))))
2916, 28eqtri 2754 . . 3 𝐺 = (𝑧 ∈ ℕ0 ↦ if(𝑧 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))))
301, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 29cpmadugsum 22874 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))))
31 simp1 1133 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
3231ad3antrrr 728 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
33 crngring 20230 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
34333ad2ant2 1131 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
3534ad3antrrr 728 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
36 cpmadumatpoly.s . . . . . . . . . . . . . . 15 𝑆 = (𝑁 ConstPolyMat 𝑅)
371, 2, 3, 4, 9, 12, 15, 5, 16, 36chfacfisfcpmat 22851 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0𝑆)
3833, 37syl3anl2 1410 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0𝑆)
3938anassrs 466 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐺:ℕ0𝑆)
4039ffvelcdmda 7100 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ 𝑆)
41 cpmadumatpoly.u . . . . . . . . . . . 12 𝑈 = (𝑁 cPolyMatToMat 𝑅)
4236, 41, 5m2cpminvid2 22751 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐺𝑛) ∈ 𝑆) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝐺𝑛))
4332, 35, 40, 42syl3anc 1368 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝐺𝑛))
4443eqcomd 2732 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝑇‘(𝑈‘(𝐺𝑛))))
4544oveq2d 7442 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)) = ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))
4645mpteq2dva 5255 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))
4746oveq2d 7442 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))))
4847eqeq2d 2737 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) ↔ (𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))))
49 fveq2 6903 . . . . . . 7 ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))))
50 3simpa 1145 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
5150ad2antrr 724 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
52 cpmadumatpoly.w . . . . . . . . . 10 𝑊 = (Base‘𝑌)
53 cpmadumatpoly.q . . . . . . . . . 10 𝑄 = (Poly1𝐴)
54 cpmadumatpoly.x . . . . . . . . . 10 𝑋 = (var1𝐴)
55 cpmadumatpoly.m2 . . . . . . . . . 10 = ( ·𝑠𝑄)
56 cpmadumatpoly.e . . . . . . . . . 10 = (.g‘(mulGrp‘𝑄))
571, 2, 3, 4, 5, 9, 12, 15, 16, 36, 8, 10, 6, 13, 14, 52, 53, 54, 55, 56, 41cpmadumatpolylem1 22877 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) ∈ (𝐵m0))
581, 2, 3, 4, 5, 9, 12, 15, 16, 36, 8, 10, 6, 13, 14, 52, 53, 54, 55, 56, 41cpmadumatpolylem2 22878 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) finSupp (0g𝐴))
59 cpmadumatpoly.i . . . . . . . . . 10 𝐼 = (𝑁 pMatToMatPoly 𝑅)
603, 4, 52, 55, 56, 54, 1, 2, 53, 59, 7, 6, 8, 5pm2mp 22821 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑈𝐺) ∈ (𝐵m0) ∧ (𝑈𝐺) finSupp (0g𝐴))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))))
6151, 57, 58, 60syl12anc 835 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))))
62 fvco3 7003 . . . . . . . . . . . . . . 15 ((𝐺:ℕ0𝑆𝑛 ∈ ℕ0) → ((𝑈𝐺)‘𝑛) = (𝑈‘(𝐺𝑛)))
6362eqcomd 2732 . . . . . . . . . . . . . 14 ((𝐺:ℕ0𝑆𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) = ((𝑈𝐺)‘𝑛))
6439, 63sylan 578 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) = ((𝑈𝐺)‘𝑛))
6564fveq2d 6907 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝑇‘((𝑈𝐺)‘𝑛)))
6665oveq2d 7442 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))) = ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛))))
6766mpteq2dva 5255 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))
6867oveq2d 7442 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛))))))
6968fveq2d 6907 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))))
7064oveq1d 7441 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)) = (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))
7170mpteq2dva 5255 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))) = (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋))))
7271oveq2d 7442 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))))
7361, 69, 723eqtr4d 2776 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
7449, 73sylan9eqr 2788 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ (𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
7574ex 411 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7648, 75sylbid 239 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7776reximdva 3158 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (∃𝑏 ∈ (𝐵m (0...𝑠))(𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) → ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7877reximdva 3158 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7930, 78mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wrex 3060  ifcif 4533   class class class wbr 5155  cmpt 5238  ccom 5688  wf 6552  cfv 6556  (class class class)co 7426  m cmap 8857  Fincfn 8976   finSupp cfsupp 9407  0cc0 11160  1c1 11161   + caddc 11163   < clt 11300  cmin 11496  cn 12266  0cn0 12526  ...cfz 13540  Basecbs 17215  +gcplusg 17268  .rcmulr 17269   ·𝑠 cvsca 17272  0gc0g 17456   Σg cgsu 17457  -gcsg 18932  .gcmg 19063  mulGrpcmgp 20119  1rcur 20166  Ringcrg 20218  CRingccrg 20219  var1cv1 22167  Poly1cpl1 22168   Mat cmat 22401   maAdju cmadu 22628   ConstPolyMat ccpmat 22699   matToPolyMat cmat2pmat 22700   cPolyMatToMat ccpmat2mat 22701   pMatToMatPoly cpm2mp 22788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-addf 11239  ax-mulf 11240
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-ot 4642  df-uni 4916  df-int 4957  df-iun 5005  df-iin 5006  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-ofr 7693  df-om 7879  df-1st 8005  df-2nd 8006  df-supp 8177  df-tpos 8243  df-cur 8284  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-map 8859  df-pm 8860  df-ixp 8929  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-fsupp 9408  df-sup 9487  df-oi 9555  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12599  df-z 12613  df-dec 12732  df-uz 12877  df-rp 13031  df-fz 13541  df-fzo 13684  df-seq 14024  df-exp 14084  df-hash 14350  df-word 14525  df-lsw 14573  df-concat 14581  df-s1 14606  df-substr 14651  df-pfx 14681  df-splice 14760  df-reverse 14769  df-s2 14859  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-mulr 17282  df-starv 17283  df-sca 17284  df-vsca 17285  df-ip 17286  df-tset 17287  df-ple 17288  df-ds 17290  df-unif 17291  df-hom 17292  df-cco 17293  df-0g 17458  df-gsum 17459  df-prds 17464  df-pws 17466  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-mhm 18775  df-submnd 18776  df-efmnd 18861  df-grp 18933  df-minusg 18934  df-sbg 18935  df-mulg 19064  df-subg 19119  df-ghm 19209  df-gim 19255  df-cntz 19313  df-oppg 19342  df-symg 19367  df-pmtr 19442  df-psgn 19491  df-cmn 19782  df-abl 19783  df-mgp 20120  df-rng 20138  df-ur 20167  df-srg 20172  df-ring 20220  df-cring 20221  df-oppr 20318  df-dvdsr 20341  df-unit 20342  df-invr 20372  df-dvr 20385  df-rhm 20456  df-subrng 20530  df-subrg 20555  df-drng 20711  df-lmod 20840  df-lss 20911  df-sra 21153  df-rgmod 21154  df-cnfld 21346  df-zring 21439  df-zrh 21495  df-dsmm 21732  df-frlm 21747  df-assa 21853  df-ascl 21855  df-psr 21908  df-mvr 21909  df-mpl 21910  df-opsr 21912  df-psr1 22171  df-vr1 22172  df-ply1 22173  df-coe1 22174  df-mamu 22385  df-mat 22402  df-mdet 22581  df-madu 22630  df-cpmat 22702  df-mat2pmat 22703  df-cpmat2mat 22704  df-decpmat 22759  df-pm2mp 22789
This theorem is referenced by:  chcoeffeq  22882
  Copyright terms: Public domain W3C validator