Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadumatpoly Structured version   Visualization version   GIF version

 Description: The product of the characteristic matrix of a given matrix and its adjunct represented as a polynomial over matrices. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
cpmadumatpoly.a 𝐴 = (𝑁 Mat 𝑅)
cpmadumatpoly.y 𝑌 = (𝑁 Mat 𝑃)
cpmadumatpoly.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadumatpoly.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cpmadumatpoly.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmadumatpoly.d 𝐷 = ((𝑍 · 1 ) (𝑇𝑀))
cpmadumatpoly.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
cpmadumatpoly.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
cpmadumatpoly ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑆,𝑛   𝑛,𝑌,𝑏,𝑠   𝐴,𝑏,𝑠,𝑛   𝐵,𝑏,𝑠   𝐷,𝑏,𝑠,𝑛   𝑛,𝐺   𝑛,𝐼   𝐽,𝑏,𝑠,𝑛   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑛,𝑏,𝑠   𝑅,𝑏,𝑠   𝑇,𝑏,𝑠,𝑛   𝑈,𝑛   𝑛,𝑊   𝑌,𝑏,𝑠   𝑍,𝑏,𝑠,𝑛   × ,𝑛   · ,𝑏,𝑠,𝑛   1 ,𝑛   0 ,𝑛   ,𝑛
Allowed substitution hints:   𝑄(𝑛,𝑠,𝑏)   𝑆(𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑠,𝑏)   𝐼(𝑠,𝑏)   (𝑛,𝑠,𝑏)   (𝑠,𝑏)   𝑊(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   0 (𝑠,𝑏)

Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cpmadumatpoly.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cpmadumatpoly.b . . 3 𝐵 = (Base‘𝐴)
3 cpmadumatpoly.p . . 3 𝑃 = (Poly1𝑅)
4 cpmadumatpoly.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cpmadumatpoly.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
6 cpmadumatpoly.z . . 3 𝑍 = (var1𝑅)
7 eqid 2798 . . 3 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
8 cpmadumatpoly.m1 . . 3 · = ( ·𝑠𝑌)
9 cpmadumatpoly.r . . 3 × = (.r𝑌)
10 cpmadumatpoly.1 . . 3 1 = (1r𝑌)
11 eqid 2798 . . 3 (+g𝑌) = (+g𝑌)
12 cpmadumatpoly.m0 . . 3 = (-g𝑌)
13 cpmadumatpoly.d . . 3 𝐷 = ((𝑍 · 1 ) (𝑇𝑀))
15 cpmadumatpoly.0 . . 3 0 = (0g𝑌)
16 cpmadumatpoly.g . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
17 eqeq1 2802 . . . . . 6 (𝑛 = 𝑧 → (𝑛 = 0 ↔ 𝑧 = 0))
18 eqeq1 2802 . . . . . . 7 (𝑛 = 𝑧 → (𝑛 = (𝑠 + 1) ↔ 𝑧 = (𝑠 + 1)))
19 breq2 5034 . . . . . . . 8 (𝑛 = 𝑧 → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝑧))
20 fvoveq1 7158 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝑏‘(𝑛 − 1)) = (𝑏‘(𝑧 − 1)))
2120fveq2d 6649 . . . . . . . . 9 (𝑛 = 𝑧 → (𝑇‘(𝑏‘(𝑛 − 1))) = (𝑇‘(𝑏‘(𝑧 − 1))))
22 2fveq3 6650 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝑇‘(𝑏𝑛)) = (𝑇‘(𝑏𝑧)))
2322oveq2d 7151 . . . . . . . . 9 (𝑛 = 𝑧 → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) = ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))
2421, 23oveq12d 7153 . . . . . . . 8 (𝑛 = 𝑧 → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) = ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧)))))
2519, 24ifbieq2d 4450 . . . . . . 7 (𝑛 = 𝑧 → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) = if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))
2618, 25ifbieq2d 4450 . . . . . 6 (𝑛 = 𝑧 → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧)))))))
2717, 26ifbieq2d 4450 . . . . 5 (𝑛 = 𝑧 → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = if(𝑧 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))))
2827cbvmptv 5133 . . . 4 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))))) = (𝑧 ∈ ℕ0 ↦ if(𝑧 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))))
2916, 28eqtri 2821 . . 3 𝐺 = (𝑧 ∈ ℕ0 ↦ if(𝑧 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))))
301, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 29cpmadugsum 21490 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))))
31 simp1 1133 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
3231ad3antrrr 729 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
33 crngring 19305 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
34333ad2ant2 1131 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
3534ad3antrrr 729 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
36 cpmadumatpoly.s . . . . . . . . . . . . . . 15 𝑆 = (𝑁 ConstPolyMat 𝑅)
371, 2, 3, 4, 9, 12, 15, 5, 16, 36chfacfisfcpmat 21467 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0𝑆)
3833, 37syl3anl2 1410 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0𝑆)
3938anassrs 471 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐺:ℕ0𝑆)
4039ffvelrnda 6828 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ 𝑆)
41 cpmadumatpoly.u . . . . . . . . . . . 12 𝑈 = (𝑁 cPolyMatToMat 𝑅)
4236, 41, 5m2cpminvid2 21367 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐺𝑛) ∈ 𝑆) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝐺𝑛))
4332, 35, 40, 42syl3anc 1368 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝐺𝑛))
4443eqcomd 2804 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝑇‘(𝑈‘(𝐺𝑛))))
4544oveq2d 7151 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)) = ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))
4645mpteq2dva 5125 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))
4746oveq2d 7151 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))))
4847eqeq2d 2809 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) ↔ (𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))))
49 fveq2 6645 . . . . . . 7 ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))))
50 3simpa 1145 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
5150ad2antrr 725 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
52 cpmadumatpoly.w . . . . . . . . . 10 𝑊 = (Base‘𝑌)
53 cpmadumatpoly.q . . . . . . . . . 10 𝑄 = (Poly1𝐴)
54 cpmadumatpoly.x . . . . . . . . . 10 𝑋 = (var1𝐴)
55 cpmadumatpoly.m2 . . . . . . . . . 10 = ( ·𝑠𝑄)
56 cpmadumatpoly.e . . . . . . . . . 10 = (.g‘(mulGrp‘𝑄))
571, 2, 3, 4, 5, 9, 12, 15, 16, 36, 8, 10, 6, 13, 14, 52, 53, 54, 55, 56, 41cpmadumatpolylem1 21493 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) ∈ (𝐵m0))
581, 2, 3, 4, 5, 9, 12, 15, 16, 36, 8, 10, 6, 13, 14, 52, 53, 54, 55, 56, 41cpmadumatpolylem2 21494 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) finSupp (0g𝐴))
59 cpmadumatpoly.i . . . . . . . . . 10 𝐼 = (𝑁 pMatToMatPoly 𝑅)
603, 4, 52, 55, 56, 54, 1, 2, 53, 59, 7, 6, 8, 5pm2mp 21437 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑈𝐺) ∈ (𝐵m0) ∧ (𝑈𝐺) finSupp (0g𝐴))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))))
6151, 57, 58, 60syl12anc 835 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))))
62 fvco3 6737 . . . . . . . . . . . . . . 15 ((𝐺:ℕ0𝑆𝑛 ∈ ℕ0) → ((𝑈𝐺)‘𝑛) = (𝑈‘(𝐺𝑛)))
6362eqcomd 2804 . . . . . . . . . . . . . 14 ((𝐺:ℕ0𝑆𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) = ((𝑈𝐺)‘𝑛))
6439, 63sylan 583 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) = ((𝑈𝐺)‘𝑛))
6564fveq2d 6649 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝑇‘((𝑈𝐺)‘𝑛)))
6665oveq2d 7151 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))) = ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛))))
6766mpteq2dva 5125 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))
6867oveq2d 7151 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛))))))
6968fveq2d 6649 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))))
7064oveq1d 7150 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)) = (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))
7170mpteq2dva 5125 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))) = (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋))))
7271oveq2d 7151 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))))
7361, 69, 723eqtr4d 2843 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
7449, 73sylan9eqr 2855 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ (𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
7574ex 416 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7648, 75sylbid 243 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7776reximdva 3233 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (∃𝑏 ∈ (𝐵m (0...𝑠))(𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) → ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7877reximdva 3233 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7930, 78mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∃wrex 3107  ifcif 4425   class class class wbr 5030   ↦ cmpt 5110   ∘ ccom 5523  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ↑m cmap 8391  Fincfn 8494   finSupp cfsupp 8819  0cc0 10528  1c1 10529   + caddc 10531   < clt 10666   − cmin 10861  ℕcn 11627  ℕ0cn0 11887  ...cfz 12887  Basecbs 16477  +gcplusg 16559  .rcmulr 16560   ·𝑠 cvsca 16563  0gc0g 16707   Σg cgsu 16708  -gcsg 18099  .gcmg 18219  mulGrpcmgp 19235  1rcur 19247  Ringcrg 19293  CRingccrg 19294  var1cv1 20812  Poly1cpl1 20813   Mat cmat 21019   maAdju cmadu 21244   ConstPolyMat ccpmat 21315   matToPolyMat cmat2pmat 21316   cPolyMatToMat ccpmat2mat 21317   pMatToMatPoly cpm2mp 21404 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-addf 10607  ax-mulf 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-ofr 7391  df-om 7563  df-1st 7673  df-2nd 7674  df-supp 7816  df-tpos 7877  df-cur 7918  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-sup 8892  df-oi 8960  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-xnn0 11958  df-z 11972  df-dec 12089  df-uz 12234  df-rp 12380  df-fz 12888  df-fzo 13031  df-seq 13367  df-exp 13428  df-hash 13689  df-word 13860  df-lsw 13908  df-concat 13916  df-s1 13943  df-substr 13996  df-pfx 14026  df-splice 14105  df-reverse 14114  df-s2 14203  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-efmnd 18028  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18220  df-subg 18271  df-ghm 18351  df-gim 18394  df-cntz 18442  df-oppg 18469  df-symg 18491  df-pmtr 18565  df-psgn 18614  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-srg 19252  df-ring 19295  df-cring 19296  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-rnghom 19466  df-drng 19500  df-subrg 19529  df-lmod 19632  df-lss 19700  df-sra 19940  df-rgmod 19941  df-cnfld 20095  df-zring 20167  df-zrh 20201  df-dsmm 20425  df-frlm 20440  df-assa 20546  df-ascl 20548  df-psr 20598  df-mvr 20599  df-mpl 20600  df-opsr 20602  df-psr1 20816  df-vr1 20817  df-ply1 20818  df-coe1 20819  df-mamu 20998  df-mat 21020  df-mdet 21197  df-madu 21246  df-cpmat 21318  df-mat2pmat 21319  df-cpmat2mat 21320  df-decpmat 21375  df-pm2mp 21405 This theorem is referenced by:  chcoeffeq  21498
 Copyright terms: Public domain W3C validator