| Step | Hyp | Ref
| Expression |
| 1 | | cpmadumatpoly.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 2 | | cpmadumatpoly.b |
. . 3
⊢ 𝐵 = (Base‘𝐴) |
| 3 | | cpmadumatpoly.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
| 4 | | cpmadumatpoly.y |
. . 3
⊢ 𝑌 = (𝑁 Mat 𝑃) |
| 5 | | cpmadumatpoly.t |
. . 3
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| 6 | | cpmadumatpoly.z |
. . 3
⊢ 𝑍 = (var1‘𝑅) |
| 7 | | eqid 2737 |
. . 3
⊢
(.g‘(mulGrp‘𝑃)) =
(.g‘(mulGrp‘𝑃)) |
| 8 | | cpmadumatpoly.m1 |
. . 3
⊢ · = (
·𝑠 ‘𝑌) |
| 9 | | cpmadumatpoly.r |
. . 3
⊢ × =
(.r‘𝑌) |
| 10 | | cpmadumatpoly.1 |
. . 3
⊢ 1 =
(1r‘𝑌) |
| 11 | | eqid 2737 |
. . 3
⊢
(+g‘𝑌) = (+g‘𝑌) |
| 12 | | cpmadumatpoly.m0 |
. . 3
⊢ − =
(-g‘𝑌) |
| 13 | | cpmadumatpoly.d |
. . 3
⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) |
| 14 | | cpmadumatpoly.j |
. . 3
⊢ 𝐽 = (𝑁 maAdju 𝑃) |
| 15 | | cpmadumatpoly.0 |
. . 3
⊢ 0 =
(0g‘𝑌) |
| 16 | | cpmadumatpoly.g |
. . . 4
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
| 17 | | eqeq1 2741 |
. . . . . 6
⊢ (𝑛 = 𝑧 → (𝑛 = 0 ↔ 𝑧 = 0)) |
| 18 | | eqeq1 2741 |
. . . . . . 7
⊢ (𝑛 = 𝑧 → (𝑛 = (𝑠 + 1) ↔ 𝑧 = (𝑠 + 1))) |
| 19 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑛 = 𝑧 → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝑧)) |
| 20 | | fvoveq1 7454 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑧 → (𝑏‘(𝑛 − 1)) = (𝑏‘(𝑧 − 1))) |
| 21 | 20 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑛 = 𝑧 → (𝑇‘(𝑏‘(𝑛 − 1))) = (𝑇‘(𝑏‘(𝑧 − 1)))) |
| 22 | | 2fveq3 6911 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑧 → (𝑇‘(𝑏‘𝑛)) = (𝑇‘(𝑏‘𝑧))) |
| 23 | 22 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑛 = 𝑧 → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧)))) |
| 24 | 21, 23 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑛 = 𝑧 → ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))) = ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧))))) |
| 25 | 19, 24 | ifbieq2d 4552 |
. . . . . . 7
⊢ (𝑛 = 𝑧 → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))))) = if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧)))))) |
| 26 | 18, 25 | ifbieq2d 4552 |
. . . . . 6
⊢ (𝑛 = 𝑧 → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))) = if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧))))))) |
| 27 | 17, 26 | ifbieq2d 4552 |
. . . . 5
⊢ (𝑛 = 𝑧 → if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))))))) = if(𝑧 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧)))))))) |
| 28 | 27 | cbvmptv 5255 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) = (𝑧 ∈ ℕ0 ↦ if(𝑧 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧)))))))) |
| 29 | 16, 28 | eqtri 2765 |
. . 3
⊢ 𝐺 = (𝑧 ∈ ℕ0 ↦ if(𝑧 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧)))))))) |
| 30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 29 | cpmadugsum 22884 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛))))) |
| 31 | | simp1 1137 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 32 | 31 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin) |
| 33 | | crngring 20242 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 34 | 33 | 3ad2ant2 1135 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 35 | 34 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 36 | | cpmadumatpoly.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| 37 | 1, 2, 3, 4, 9, 12,
15, 5, 16, 36 | chfacfisfcpmat 22861 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) |
| 38 | 33, 37 | syl3anl2 1415 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) |
| 39 | 38 | anassrs 467 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝐺:ℕ0⟶𝑆) |
| 40 | 39 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ 𝑆) |
| 41 | | cpmadumatpoly.u |
. . . . . . . . . . . 12
⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) |
| 42 | 36, 41, 5 | m2cpminvid2 22761 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐺‘𝑛) ∈ 𝑆) → (𝑇‘(𝑈‘(𝐺‘𝑛))) = (𝐺‘𝑛)) |
| 43 | 32, 35, 40, 42 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺‘𝑛))) = (𝐺‘𝑛)) |
| 44 | 43 | eqcomd 2743 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = (𝑇‘(𝑈‘(𝐺‘𝑛)))) |
| 45 | 44 | oveq2d 7447 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)) = ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))) |
| 46 | 45 | mpteq2dva 5242 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))) |
| 47 | 46 | oveq2d 7447 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)))) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))))) |
| 48 | 47 | eqeq2d 2748 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → ((𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)))) ↔ (𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))))) |
| 49 | | fveq2 6906 |
. . . . . . 7
⊢ ((𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))) → (𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))))) |
| 50 | | 3simpa 1149 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
| 51 | 50 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
| 52 | | cpmadumatpoly.w |
. . . . . . . . . 10
⊢ 𝑊 = (Base‘𝑌) |
| 53 | | cpmadumatpoly.q |
. . . . . . . . . 10
⊢ 𝑄 = (Poly1‘𝐴) |
| 54 | | cpmadumatpoly.x |
. . . . . . . . . 10
⊢ 𝑋 = (var1‘𝐴) |
| 55 | | cpmadumatpoly.m2 |
. . . . . . . . . 10
⊢ ∗ = (
·𝑠 ‘𝑄) |
| 56 | | cpmadumatpoly.e |
. . . . . . . . . 10
⊢ ↑ =
(.g‘(mulGrp‘𝑄)) |
| 57 | 1, 2, 3, 4, 5, 9, 12, 15, 16, 36, 8, 10, 6, 13, 14, 52, 53, 54, 55, 56, 41 | cpmadumatpolylem1 22887 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈 ∘ 𝐺) ∈ (𝐵 ↑m
ℕ0)) |
| 58 | 1, 2, 3, 4, 5, 9, 12, 15, 16, 36, 8, 10, 6, 13, 14, 52, 53, 54, 55, 56, 41 | cpmadumatpolylem2 22888 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈 ∘ 𝐺) finSupp (0g‘𝐴)) |
| 59 | | cpmadumatpoly.i |
. . . . . . . . . 10
⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) |
| 60 | 3, 4, 52, 55, 56, 54, 1, 2, 53, 59, 7, 6, 8, 5 | pm2mp 22831 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑈 ∘ 𝐺) ∈ (𝐵 ↑m ℕ0)
∧ (𝑈 ∘ 𝐺) finSupp
(0g‘𝐴)))
→ (𝐼‘(𝑌 Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑈 ∘ 𝐺)‘𝑛) ∗ (𝑛 ↑ 𝑋))))) |
| 61 | 51, 57, 58, 60 | syl12anc 837 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑈 ∘ 𝐺)‘𝑛) ∗ (𝑛 ↑ 𝑋))))) |
| 62 | | fvco3 7008 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺:ℕ0⟶𝑆 ∧ 𝑛 ∈ ℕ0) → ((𝑈 ∘ 𝐺)‘𝑛) = (𝑈‘(𝐺‘𝑛))) |
| 63 | 62 | eqcomd 2743 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:ℕ0⟶𝑆 ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺‘𝑛)) = ((𝑈 ∘ 𝐺)‘𝑛)) |
| 64 | 39, 63 | sylan 580 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺‘𝑛)) = ((𝑈 ∘ 𝐺)‘𝑛)) |
| 65 | 64 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺‘𝑛))) = (𝑇‘((𝑈 ∘ 𝐺)‘𝑛))) |
| 66 | 65 | oveq2d 7447 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))) = ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛)))) |
| 67 | 66 | mpteq2dva 5242 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛))))) |
| 68 | 67 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛)))))) |
| 69 | 68 | fveq2d 6910 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛))))))) |
| 70 | 64 | oveq1d 7446 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (((𝑈 ∘ 𝐺)‘𝑛) ∗ (𝑛 ↑ 𝑋))) |
| 71 | 70 | mpteq2dva 5242 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))) = (𝑛 ∈ ℕ0 ↦ (((𝑈 ∘ 𝐺)‘𝑛) ∗ (𝑛 ↑ 𝑋)))) |
| 72 | 71 | oveq2d 7447 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑈 ∘ 𝐺)‘𝑛) ∗ (𝑛 ↑ 𝑋))))) |
| 73 | 61, 69, 72 | 3eqtr4d 2787 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))))) |
| 74 | 49, 73 | sylan9eqr 2799 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))))) → (𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))))) |
| 75 | 74 | ex 412 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → ((𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))) → (𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)))))) |
| 76 | 48, 75 | sylbid 240 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → ((𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)))) → (𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)))))) |
| 77 | 76 | reximdva 3168 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) → (∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)))) → ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)))))) |
| 78 | 77 | reximdva 3168 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)))))) |
| 79 | 30, 78 | mpd 15 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))))) |