MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadumatpoly Structured version   Visualization version   GIF version

Theorem cpmadumatpoly 21175
Description: The product of the characteristic matrix of a given matrix and its adjunct represented as a polynomial over matrices. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
cpmadumatpoly.a 𝐴 = (𝑁 Mat 𝑅)
cpmadumatpoly.b 𝐵 = (Base‘𝐴)
cpmadumatpoly.p 𝑃 = (Poly1𝑅)
cpmadumatpoly.y 𝑌 = (𝑁 Mat 𝑃)
cpmadumatpoly.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadumatpoly.r × = (.r𝑌)
cpmadumatpoly.m0 = (-g𝑌)
cpmadumatpoly.0 0 = (0g𝑌)
cpmadumatpoly.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cpmadumatpoly.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmadumatpoly.m1 · = ( ·𝑠𝑌)
cpmadumatpoly.1 1 = (1r𝑌)
cpmadumatpoly.z 𝑍 = (var1𝑅)
cpmadumatpoly.d 𝐷 = ((𝑍 · 1 ) (𝑇𝑀))
cpmadumatpoly.j 𝐽 = (𝑁 maAdju 𝑃)
cpmadumatpoly.w 𝑊 = (Base‘𝑌)
cpmadumatpoly.q 𝑄 = (Poly1𝐴)
cpmadumatpoly.x 𝑋 = (var1𝐴)
cpmadumatpoly.m2 = ( ·𝑠𝑄)
cpmadumatpoly.e = (.g‘(mulGrp‘𝑄))
cpmadumatpoly.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
cpmadumatpoly.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
cpmadumatpoly ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑆,𝑛   𝑛,𝑌,𝑏,𝑠   𝐴,𝑏,𝑠,𝑛   𝐵,𝑏,𝑠   𝐷,𝑏,𝑠,𝑛   𝑛,𝐺   𝑛,𝐼   𝐽,𝑏,𝑠,𝑛   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑛,𝑏,𝑠   𝑅,𝑏,𝑠   𝑇,𝑏,𝑠,𝑛   𝑈,𝑛   𝑛,𝑊   𝑌,𝑏,𝑠   𝑍,𝑏,𝑠,𝑛   × ,𝑛   · ,𝑏,𝑠,𝑛   1 ,𝑛   0 ,𝑛   ,𝑛
Allowed substitution hints:   𝑄(𝑛,𝑠,𝑏)   𝑆(𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑠,𝑏)   𝐼(𝑠,𝑏)   (𝑛,𝑠,𝑏)   (𝑠,𝑏)   𝑊(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem cpmadumatpoly
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cpmadumatpoly.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cpmadumatpoly.b . . 3 𝐵 = (Base‘𝐴)
3 cpmadumatpoly.p . . 3 𝑃 = (Poly1𝑅)
4 cpmadumatpoly.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cpmadumatpoly.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
6 cpmadumatpoly.z . . 3 𝑍 = (var1𝑅)
7 eqid 2795 . . 3 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
8 cpmadumatpoly.m1 . . 3 · = ( ·𝑠𝑌)
9 cpmadumatpoly.r . . 3 × = (.r𝑌)
10 cpmadumatpoly.1 . . 3 1 = (1r𝑌)
11 eqid 2795 . . 3 (+g𝑌) = (+g𝑌)
12 cpmadumatpoly.m0 . . 3 = (-g𝑌)
13 cpmadumatpoly.d . . 3 𝐷 = ((𝑍 · 1 ) (𝑇𝑀))
14 cpmadumatpoly.j . . 3 𝐽 = (𝑁 maAdju 𝑃)
15 cpmadumatpoly.0 . . 3 0 = (0g𝑌)
16 cpmadumatpoly.g . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
17 eqeq1 2799 . . . . . 6 (𝑛 = 𝑧 → (𝑛 = 0 ↔ 𝑧 = 0))
18 eqeq1 2799 . . . . . . 7 (𝑛 = 𝑧 → (𝑛 = (𝑠 + 1) ↔ 𝑧 = (𝑠 + 1)))
19 breq2 4966 . . . . . . . 8 (𝑛 = 𝑧 → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝑧))
20 fvoveq1 7039 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝑏‘(𝑛 − 1)) = (𝑏‘(𝑧 − 1)))
2120fveq2d 6542 . . . . . . . . 9 (𝑛 = 𝑧 → (𝑇‘(𝑏‘(𝑛 − 1))) = (𝑇‘(𝑏‘(𝑧 − 1))))
22 2fveq3 6543 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝑇‘(𝑏𝑛)) = (𝑇‘(𝑏𝑧)))
2322oveq2d 7032 . . . . . . . . 9 (𝑛 = 𝑧 → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) = ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))
2421, 23oveq12d 7034 . . . . . . . 8 (𝑛 = 𝑧 → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) = ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧)))))
2519, 24ifbieq2d 4406 . . . . . . 7 (𝑛 = 𝑧 → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) = if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))
2618, 25ifbieq2d 4406 . . . . . 6 (𝑛 = 𝑧 → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧)))))))
2717, 26ifbieq2d 4406 . . . . 5 (𝑛 = 𝑧 → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = if(𝑧 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))))
2827cbvmptv 5061 . . . 4 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))))) = (𝑧 ∈ ℕ0 ↦ if(𝑧 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))))
2916, 28eqtri 2819 . . 3 𝐺 = (𝑧 ∈ ℕ0 ↦ if(𝑧 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑧))))))))
301, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 29cpmadugsum 21170 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))))
31 simp1 1129 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
3231ad3antrrr 726 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
33 crngring 18998 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
34333ad2ant2 1127 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
3534ad3antrrr 726 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
36 cpmadumatpoly.s . . . . . . . . . . . . . . 15 𝑆 = (𝑁 ConstPolyMat 𝑅)
371, 2, 3, 4, 9, 12, 15, 5, 16, 36chfacfisfcpmat 21147 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝐺:ℕ0𝑆)
3833, 37syl3anl2 1406 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝐺:ℕ0𝑆)
3938anassrs 468 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → 𝐺:ℕ0𝑆)
4039ffvelrnda 6716 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ 𝑆)
41 cpmadumatpoly.u . . . . . . . . . . . 12 𝑈 = (𝑁 cPolyMatToMat 𝑅)
4236, 41, 5m2cpminvid2 21047 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐺𝑛) ∈ 𝑆) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝐺𝑛))
4332, 35, 40, 42syl3anc 1364 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝐺𝑛))
4443eqcomd 2801 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) = (𝑇‘(𝑈‘(𝐺𝑛))))
4544oveq2d 7032 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)) = ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))
4645mpteq2dva 5055 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))
4746oveq2d 7032 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))))
4847eqeq2d 2805 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) ↔ (𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))))
49 fveq2 6538 . . . . . . 7 ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))))
50 3simpa 1141 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
5150ad2antrr 722 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
52 cpmadumatpoly.w . . . . . . . . . 10 𝑊 = (Base‘𝑌)
53 cpmadumatpoly.q . . . . . . . . . 10 𝑄 = (Poly1𝐴)
54 cpmadumatpoly.x . . . . . . . . . 10 𝑋 = (var1𝐴)
55 cpmadumatpoly.m2 . . . . . . . . . 10 = ( ·𝑠𝑄)
56 cpmadumatpoly.e . . . . . . . . . 10 = (.g‘(mulGrp‘𝑄))
571, 2, 3, 4, 5, 9, 12, 15, 16, 36, 8, 10, 6, 13, 14, 52, 53, 54, 55, 56, 41cpmadumatpolylem1 21173 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑈𝐺) ∈ (𝐵𝑚0))
581, 2, 3, 4, 5, 9, 12, 15, 16, 36, 8, 10, 6, 13, 14, 52, 53, 54, 55, 56, 41cpmadumatpolylem2 21174 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑈𝐺) finSupp (0g𝐴))
59 cpmadumatpoly.i . . . . . . . . . 10 𝐼 = (𝑁 pMatToMatPoly 𝑅)
603, 4, 52, 55, 56, 54, 1, 2, 53, 59, 7, 6, 8, 5pm2mp 21117 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑈𝐺) ∈ (𝐵𝑚0) ∧ (𝑈𝐺) finSupp (0g𝐴))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))))
6151, 57, 58, 60syl12anc 833 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))))
62 fvco3 6627 . . . . . . . . . . . . . . 15 ((𝐺:ℕ0𝑆𝑛 ∈ ℕ0) → ((𝑈𝐺)‘𝑛) = (𝑈‘(𝐺𝑛)))
6362eqcomd 2801 . . . . . . . . . . . . . 14 ((𝐺:ℕ0𝑆𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) = ((𝑈𝐺)‘𝑛))
6439, 63sylan 580 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) = ((𝑈𝐺)‘𝑛))
6564fveq2d 6542 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝑇‘((𝑈𝐺)‘𝑛)))
6665oveq2d 7032 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))) = ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛))))
6766mpteq2dva 5055 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))
6867oveq2d 7032 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛))))))
6968fveq2d 6542 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈𝐺)‘𝑛)))))))
7064oveq1d 7031 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)) = (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))
7170mpteq2dva 5055 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))) = (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋))))
7271oveq2d 7032 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑈𝐺)‘𝑛) (𝑛 𝑋)))))
7361, 69, 723eqtr4d 2841 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
7449, 73sylan9eqr 2853 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ (𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛))))))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
7574ex 413 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺𝑛)))))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7648, 75sylbid 241 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → ((𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) → (𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7776reximdva 3237 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) → ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7877reximdva 3237 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐷 × (𝐽𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺𝑛)))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋))))))
7930, 78mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  wrex 3106  ifcif 4381   class class class wbr 4962  cmpt 5041  ccom 5447  wf 6221  cfv 6225  (class class class)co 7016  𝑚 cmap 8256  Fincfn 8357   finSupp cfsupp 8679  0cc0 10383  1c1 10384   + caddc 10386   < clt 10521  cmin 10717  cn 11486  0cn0 11745  ...cfz 12742  Basecbs 16312  +gcplusg 16394  .rcmulr 16395   ·𝑠 cvsca 16398  0gc0g 16542   Σg cgsu 16543  -gcsg 17863  .gcmg 17981  mulGrpcmgp 18929  1rcur 18941  Ringcrg 18987  CRingccrg 18988  var1cv1 20027  Poly1cpl1 20028   Mat cmat 20700   maAdju cmadu 20925   ConstPolyMat ccpmat 20995   matToPolyMat cmat2pmat 20996   cPolyMatToMat ccpmat2mat 20997   pMatToMatPoly cpm2mp 21084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-xor 1497  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-ot 4481  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-ofr 7268  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-tpos 7743  df-cur 7784  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-sup 8752  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-xnn0 11816  df-z 11830  df-dec 11948  df-uz 12094  df-rp 12240  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-word 13708  df-lsw 13761  df-concat 13769  df-s1 13794  df-substr 13839  df-pfx 13869  df-splice 13948  df-reverse 13957  df-s2 14046  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-0g 16544  df-gsum 16545  df-prds 16550  df-pws 16552  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-mulg 17982  df-subg 18030  df-ghm 18097  df-gim 18140  df-cntz 18188  df-oppg 18215  df-symg 18237  df-pmtr 18301  df-psgn 18350  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-srg 18946  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-dvr 19123  df-rnghom 19157  df-drng 19194  df-subrg 19223  df-lmod 19326  df-lss 19394  df-sra 19634  df-rgmod 19635  df-assa 19774  df-ascl 19776  df-psr 19824  df-mvr 19825  df-mpl 19826  df-opsr 19828  df-psr1 20031  df-vr1 20032  df-ply1 20033  df-coe1 20034  df-cnfld 20228  df-zring 20300  df-zrh 20333  df-dsmm 20558  df-frlm 20573  df-mamu 20677  df-mat 20701  df-mdet 20878  df-madu 20927  df-cpmat 20998  df-mat2pmat 20999  df-cpmat2mat 21000  df-decpmat 21055  df-pm2mp 21085
This theorem is referenced by:  chcoeffeq  21178
  Copyright terms: Public domain W3C validator