![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > emcllem3 | Structured version Visualization version GIF version |
Description: Lemma for emcl 26850. The function 𝐻 is the difference between 𝐹 and 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
emcl.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) |
emcl.2 | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
emcl.3 | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) |
Ref | Expression |
---|---|
emcllem3 | ⊢ (𝑁 ∈ ℕ → (𝐻‘𝑁) = ((𝐹‘𝑁) − (𝐺‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn 12220 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
2 | 1 | nnrpd 13010 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ+) |
3 | nnrp 12981 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
4 | 2, 3 | relogdivd 26475 | . . 3 ⊢ (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁))) |
5 | nncn 12216 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
6 | 1cnd 11205 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
7 | nnne0 12242 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
8 | 5, 6, 5, 7 | divdird 12024 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) = ((𝑁 / 𝑁) + (1 / 𝑁))) |
9 | 5, 7 | dividd 11984 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1) |
10 | 9 | oveq1d 7416 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 𝑁) + (1 / 𝑁)) = (1 + (1 / 𝑁))) |
11 | 8, 10 | eqtr2d 2765 | . . . 4 ⊢ (𝑁 ∈ ℕ → (1 + (1 / 𝑁)) = ((𝑁 + 1) / 𝑁)) |
12 | 11 | fveq2d 6885 | . . 3 ⊢ (𝑁 ∈ ℕ → (log‘(1 + (1 / 𝑁))) = (log‘((𝑁 + 1) / 𝑁))) |
13 | fzfid 13934 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin) | |
14 | elfznn 13526 | . . . . . . . 8 ⊢ (𝑚 ∈ (1...𝑁) → 𝑚 ∈ ℕ) | |
15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ) |
16 | 15 | nnrecred 12259 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℝ) |
17 | 13, 16 | fsumrecl 15676 | . . . . 5 ⊢ (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℝ) |
18 | 17 | recnd 11238 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℂ) |
19 | 3 | relogcld 26472 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℝ) |
20 | 19 | recnd 11238 | . . . 4 ⊢ (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ) |
21 | 2 | relogcld 26472 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℝ) |
22 | 21 | recnd 11238 | . . . 4 ⊢ (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℂ) |
23 | 18, 20, 22 | nnncan1d 11601 | . . 3 ⊢ (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) − (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1)))) = ((log‘(𝑁 + 1)) − (log‘𝑁))) |
24 | 4, 12, 23 | 3eqtr4d 2774 | . 2 ⊢ (𝑁 ∈ ℕ → (log‘(1 + (1 / 𝑁))) = ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) − (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))) |
25 | oveq2 7409 | . . . . 5 ⊢ (𝑛 = 𝑁 → (1 / 𝑛) = (1 / 𝑁)) | |
26 | 25 | oveq2d 7417 | . . . 4 ⊢ (𝑛 = 𝑁 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑁))) |
27 | 26 | fveq2d 6885 | . . 3 ⊢ (𝑛 = 𝑁 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑁)))) |
28 | emcl.3 | . . 3 ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) | |
29 | fvex 6894 | . . 3 ⊢ (log‘(1 + (1 / 𝑁))) ∈ V | |
30 | 27, 28, 29 | fvmpt 6988 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐻‘𝑁) = (log‘(1 + (1 / 𝑁)))) |
31 | oveq2 7409 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
32 | 31 | sumeq1d 15643 | . . . . 5 ⊢ (𝑛 = 𝑁 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...𝑁)(1 / 𝑚)) |
33 | fveq2 6881 | . . . . 5 ⊢ (𝑛 = 𝑁 → (log‘𝑛) = (log‘𝑁)) | |
34 | 32, 33 | oveq12d 7419 | . . . 4 ⊢ (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) |
35 | emcl.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) | |
36 | ovex 7434 | . . . 4 ⊢ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ V | |
37 | 34, 35, 36 | fvmpt 6988 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐹‘𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) |
38 | fvoveq1 7424 | . . . . 5 ⊢ (𝑛 = 𝑁 → (log‘(𝑛 + 1)) = (log‘(𝑁 + 1))) | |
39 | 32, 38 | oveq12d 7419 | . . . 4 ⊢ (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1)))) |
40 | emcl.2 | . . . 4 ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) | |
41 | ovex 7434 | . . . 4 ⊢ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V | |
42 | 39, 40, 41 | fvmpt 6988 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺‘𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1)))) |
43 | 37, 42 | oveq12d 7419 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹‘𝑁) − (𝐺‘𝑁)) = ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) − (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))) |
44 | 24, 30, 43 | 3eqtr4d 2774 | 1 ⊢ (𝑁 ∈ ℕ → (𝐻‘𝑁) = ((𝐹‘𝑁) − (𝐺‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5221 ‘cfv 6533 (class class class)co 7401 1c1 11106 + caddc 11108 − cmin 11440 / cdiv 11867 ℕcn 12208 ...cfz 13480 Σcsu 15628 logclog 26404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-starv 17210 df-sca 17211 df-vsca 17212 df-ip 17213 df-tset 17214 df-ple 17215 df-ds 17217 df-unif 17218 df-hom 17219 df-cco 17220 df-rest 17366 df-topn 17367 df-0g 17385 df-gsum 17386 df-topgen 17387 df-pt 17388 df-prds 17391 df-xrs 17446 df-qtop 17451 df-imas 17452 df-xps 17454 df-mre 17528 df-mrc 17529 df-acs 17531 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-submnd 18703 df-mulg 18985 df-cntz 19222 df-cmn 19691 df-psmet 21219 df-xmet 21220 df-met 21221 df-bl 21222 df-mopn 21223 df-fbas 21224 df-fg 21225 df-cnfld 21228 df-top 22717 df-topon 22734 df-topsp 22756 df-bases 22770 df-cld 22844 df-ntr 22845 df-cls 22846 df-nei 22923 df-lp 22961 df-perf 22962 df-cn 23052 df-cnp 23053 df-haus 23140 df-tx 23387 df-hmeo 23580 df-fil 23671 df-fm 23763 df-flim 23764 df-flf 23765 df-xms 24147 df-ms 24148 df-tms 24149 df-cncf 24719 df-limc 25716 df-dv 25717 df-log 26406 |
This theorem is referenced by: emcllem6 26848 |
Copyright terms: Public domain | W3C validator |