Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxlinesc Structured version   Visualization version   GIF version

Theorem rrxlinesc 47999
Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension, expressed by their coordinates. (Contributed by AV, 13-Feb-2023.)
Hypotheses
Ref Expression
rrxlinesc.e 𝐸 = (ℝ^‘𝐼)
rrxlinesc.p 𝑃 = (ℝ ↑m 𝐼)
rrxlinesc.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrxlinesc (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
Distinct variable groups:   𝐸,𝑝,𝑡,𝑥,𝑦   𝑖,𝐼,𝑝,𝑡,𝑥,𝑦   𝑃,𝑖,𝑝,𝑡
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝐸(𝑖)   𝐿(𝑥,𝑦,𝑡,𝑖,𝑝)

Proof of Theorem rrxlinesc
StepHypRef Expression
1 rrxlinesc.e . . 3 𝐸 = (ℝ^‘𝐼)
2 rrxlinesc.p . . 3 𝑃 = (ℝ ↑m 𝐼)
3 rrxlinesc.l . . 3 𝐿 = (LineM𝐸)
4 eqid 2725 . . 3 ( ·𝑠𝐸) = ( ·𝑠𝐸)
5 eqid 2725 . . 3 (+g𝐸) = (+g𝐸)
61, 2, 3, 4, 5rrxlines 47997 . 2 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦))}))
7 eqid 2725 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
8 simpll1 1209 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 ∈ Fin)
9 1red 11252 . . . . . . 7 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
10 simpr 483 . . . . . . 7 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
119, 10resubcld 11679 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
12 id 22 . . . . . . . . . . . 12 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
1312, 1, 7rrxbasefi 25399 . . . . . . . . . . 11 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼))
142, 13eqtr4id 2784 . . . . . . . . . 10 (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸))
1514eleq2d 2811 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑥𝑃𝑥 ∈ (Base‘𝐸)))
1615biimpa 475 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑥𝑃) → 𝑥 ∈ (Base‘𝐸))
17163adant3 1129 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑥 ∈ (Base‘𝐸))
1817ad2antrr 724 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑥 ∈ (Base‘𝐸))
19 eldifi 4123 . . . . . . . . . 10 (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦𝑃)
2014eleq2d 2811 . . . . . . . . . 10 (𝐼 ∈ Fin → (𝑦𝑃𝑦 ∈ (Base‘𝐸)))
2119, 20imbitrid 243 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (Base‘𝐸)))
2221a1d 25 . . . . . . . 8 (𝐼 ∈ Fin → (𝑥𝑃 → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (Base‘𝐸))))
23223imp 1108 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦 ∈ (Base‘𝐸))
2423ad2antrr 724 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑦 ∈ (Base‘𝐸))
25143ad2ant1 1130 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑃 = (Base‘𝐸))
2625eleq2d 2811 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → (𝑝𝑃𝑝 ∈ (Base‘𝐸)))
2726biimpa 475 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑝 ∈ (Base‘𝐸))
2827adantr 479 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑝 ∈ (Base‘𝐸))
291, 7, 4, 8, 11, 18, 24, 28, 5, 10rrxplusgvscavalb 25384 . . . . 5 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦)) ↔ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3029rexbidva 3166 . . . 4 (((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦)) ↔ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3130rabbidva 3425 . . 3 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))})
3231mpoeq3dva 7497 . 2 (𝐼 ∈ Fin → (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
336, 32eqtrd 2765 1 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  {crab 3418  cdif 3941  {csn 4630  cfv 6549  (class class class)co 7419  cmpo 7421  m cmap 8845  Fincfn 8964  cr 11144  1c1 11146   + caddc 11148   · cmul 11150  cmin 11481  Basecbs 17199  +gcplusg 17252   ·𝑠 cvsca 17256  ℝ^crrx 25372  LineMcline 47991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223  ax-addf 11224  ax-mulf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-sup 9472  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-rp 13015  df-fz 13525  df-seq 14008  df-exp 14068  df-cj 15090  df-re 15091  df-im 15092  df-sqrt 15226  df-abs 15227  df-struct 17135  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-ress 17229  df-plusg 17265  df-mulr 17266  df-starv 17267  df-sca 17268  df-vsca 17269  df-ip 17270  df-tset 17271  df-ple 17272  df-ds 17274  df-unif 17275  df-hom 17276  df-cco 17277  df-0g 17442  df-prds 17448  df-pws 17450  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-mhm 18759  df-grp 18917  df-minusg 18918  df-sbg 18919  df-subg 19103  df-ghm 19193  df-cmn 19766  df-abl 19767  df-mgp 20104  df-rng 20122  df-ur 20151  df-ring 20204  df-cring 20205  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-rhm 20440  df-subrng 20512  df-subrg 20537  df-drng 20655  df-field 20656  df-staf 20754  df-srng 20755  df-lmod 20774  df-lss 20845  df-sra 21087  df-rgmod 21088  df-cnfld 21314  df-refld 21571  df-dsmm 21700  df-frlm 21715  df-tng 24554  df-tcph 25158  df-rrx 25374  df-line 47993
This theorem is referenced by:  eenglngeehlnm  48003
  Copyright terms: Public domain W3C validator