| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxlinesc | Structured version Visualization version GIF version | ||
| Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension, expressed by their coordinates. (Contributed by AV, 13-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrxlinesc.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrxlinesc.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrxlinesc.l | ⊢ 𝐿 = (LineM‘𝐸) |
| Ref | Expression |
|---|---|
| rrxlinesc | ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxlinesc.e | . . 3 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 2 | rrxlinesc.p | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 3 | rrxlinesc.l | . . 3 ⊢ 𝐿 = (LineM‘𝐸) | |
| 4 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝐸) = ( ·𝑠 ‘𝐸) | |
| 5 | eqid 2729 | . . 3 ⊢ (+g‘𝐸) = (+g‘𝐸) | |
| 6 | 1, 2, 3, 4, 5 | rrxlines 48718 | . 2 ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑥)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑦))})) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 8 | simpll1 1213 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 ∈ Fin) | |
| 9 | 1red 11116 | . . . . . . 7 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ) | |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) | |
| 11 | 9, 10 | resubcld 11548 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ) |
| 12 | id 22 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
| 13 | 12, 1, 7 | rrxbasefi 25308 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼)) |
| 14 | 2, 13 | eqtr4id 2783 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸)) |
| 15 | 14 | eleq2d 2814 | . . . . . . . . 9 ⊢ (𝐼 ∈ Fin → (𝑥 ∈ 𝑃 ↔ 𝑥 ∈ (Base‘𝐸))) |
| 16 | 15 | biimpa 476 | . . . . . . . 8 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ (Base‘𝐸)) |
| 17 | 16 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑥 ∈ (Base‘𝐸)) |
| 18 | 17 | ad2antrr 726 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑥 ∈ (Base‘𝐸)) |
| 19 | eldifi 4082 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ 𝑃) | |
| 20 | 14 | eleq2d 2814 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → (𝑦 ∈ 𝑃 ↔ 𝑦 ∈ (Base‘𝐸))) |
| 21 | 19, 20 | imbitrid 244 | . . . . . . . . 9 ⊢ (𝐼 ∈ Fin → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (Base‘𝐸))) |
| 22 | 21 | a1d 25 | . . . . . . . 8 ⊢ (𝐼 ∈ Fin → (𝑥 ∈ 𝑃 → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (Base‘𝐸)))) |
| 23 | 22 | 3imp 1110 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦 ∈ (Base‘𝐸)) |
| 24 | 23 | ad2antrr 726 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑦 ∈ (Base‘𝐸)) |
| 25 | 14 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑃 = (Base‘𝐸)) |
| 26 | 25 | eleq2d 2814 | . . . . . . . 8 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → (𝑝 ∈ 𝑃 ↔ 𝑝 ∈ (Base‘𝐸))) |
| 27 | 26 | biimpa 476 | . . . . . . 7 ⊢ (((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ (Base‘𝐸)) |
| 28 | 27 | adantr 480 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑝 ∈ (Base‘𝐸)) |
| 29 | 1, 7, 4, 8, 11, 18, 24, 28, 5, 10 | rrxplusgvscavalb 25293 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑥)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑦)) ↔ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 30 | 29 | rexbidva 3151 | . . . 4 ⊢ (((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑥)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑦)) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 31 | 30 | rabbidva 3401 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑥)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑦))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))}) |
| 32 | 31 | mpoeq3dva 7426 | . 2 ⊢ (𝐼 ∈ Fin → (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑥)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑦))}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) |
| 33 | 6, 32 | eqtrd 2764 | 1 ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3394 ∖ cdif 3900 {csn 4577 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ↑m cmap 8753 Fincfn 8872 ℝcr 11008 1c1 11010 + caddc 11012 · cmul 11014 − cmin 11347 Basecbs 17120 +gcplusg 17161 ·𝑠 cvsca 17165 ℝ^crrx 25281 LineMcline 48712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-ghm 19092 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-field 20617 df-staf 20724 df-srng 20725 df-lmod 20765 df-lss 20835 df-sra 21077 df-rgmod 21078 df-cnfld 21262 df-refld 21512 df-dsmm 21639 df-frlm 21654 df-tng 24470 df-tcph 25067 df-rrx 25283 df-line 48714 |
| This theorem is referenced by: eenglngeehlnm 48724 |
| Copyright terms: Public domain | W3C validator |