Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxlinesc Structured version   Visualization version   GIF version

Theorem rrxlinesc 46081
Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension, expressed by their coordinates. (Contributed by AV, 13-Feb-2023.)
Hypotheses
Ref Expression
rrxlinesc.e 𝐸 = (ℝ^‘𝐼)
rrxlinesc.p 𝑃 = (ℝ ↑m 𝐼)
rrxlinesc.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrxlinesc (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
Distinct variable groups:   𝐸,𝑝,𝑡,𝑥,𝑦   𝑖,𝐼,𝑝,𝑡,𝑥,𝑦   𝑃,𝑖,𝑝,𝑡
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝐸(𝑖)   𝐿(𝑥,𝑦,𝑡,𝑖,𝑝)

Proof of Theorem rrxlinesc
StepHypRef Expression
1 rrxlinesc.e . . 3 𝐸 = (ℝ^‘𝐼)
2 rrxlinesc.p . . 3 𝑃 = (ℝ ↑m 𝐼)
3 rrxlinesc.l . . 3 𝐿 = (LineM𝐸)
4 eqid 2738 . . 3 ( ·𝑠𝐸) = ( ·𝑠𝐸)
5 eqid 2738 . . 3 (+g𝐸) = (+g𝐸)
61, 2, 3, 4, 5rrxlines 46079 . 2 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦))}))
7 eqid 2738 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
8 simpll1 1211 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 ∈ Fin)
9 1red 10976 . . . . . . 7 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
10 simpr 485 . . . . . . 7 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
119, 10resubcld 11403 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
12 id 22 . . . . . . . . . . . 12 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
1312, 1, 7rrxbasefi 24574 . . . . . . . . . . 11 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼))
142, 13eqtr4id 2797 . . . . . . . . . 10 (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸))
1514eleq2d 2824 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑥𝑃𝑥 ∈ (Base‘𝐸)))
1615biimpa 477 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑥𝑃) → 𝑥 ∈ (Base‘𝐸))
17163adant3 1131 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑥 ∈ (Base‘𝐸))
1817ad2antrr 723 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑥 ∈ (Base‘𝐸))
19 eldifi 4061 . . . . . . . . . 10 (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦𝑃)
2014eleq2d 2824 . . . . . . . . . 10 (𝐼 ∈ Fin → (𝑦𝑃𝑦 ∈ (Base‘𝐸)))
2119, 20syl5ib 243 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (Base‘𝐸)))
2221a1d 25 . . . . . . . 8 (𝐼 ∈ Fin → (𝑥𝑃 → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (Base‘𝐸))))
23223imp 1110 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦 ∈ (Base‘𝐸))
2423ad2antrr 723 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑦 ∈ (Base‘𝐸))
25143ad2ant1 1132 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑃 = (Base‘𝐸))
2625eleq2d 2824 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → (𝑝𝑃𝑝 ∈ (Base‘𝐸)))
2726biimpa 477 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑝 ∈ (Base‘𝐸))
2827adantr 481 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑝 ∈ (Base‘𝐸))
291, 7, 4, 8, 11, 18, 24, 28, 5, 10rrxplusgvscavalb 24559 . . . . 5 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦)) ↔ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3029rexbidva 3225 . . . 4 (((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦)) ↔ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3130rabbidva 3413 . . 3 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))})
3231mpoeq3dva 7352 . 2 (𝐼 ∈ Fin → (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
336, 32eqtrd 2778 1 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Fincfn 8733  cr 10870  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  Basecbs 16912  +gcplusg 16962   ·𝑠 cvsca 16966  ℝ^crrx 24547  LineMcline 46073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-staf 20105  df-srng 20106  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-refld 20810  df-dsmm 20939  df-frlm 20954  df-tng 23740  df-tcph 24333  df-rrx 24549  df-line 46075
This theorem is referenced by:  eenglngeehlnm  46085
  Copyright terms: Public domain W3C validator