Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxlinesc Structured version   Visualization version   GIF version

Theorem rrxlinesc 44721
Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension, expressed by their coordinates. (Contributed by AV, 13-Feb-2023.)
Hypotheses
Ref Expression
rrxlinesc.e 𝐸 = (ℝ^‘𝐼)
rrxlinesc.p 𝑃 = (ℝ ↑m 𝐼)
rrxlinesc.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrxlinesc (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
Distinct variable groups:   𝐸,𝑝,𝑡,𝑥,𝑦   𝑖,𝐼,𝑝,𝑡,𝑥,𝑦   𝑃,𝑖,𝑝,𝑡
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝐸(𝑖)   𝐿(𝑥,𝑦,𝑡,𝑖,𝑝)

Proof of Theorem rrxlinesc
StepHypRef Expression
1 rrxlinesc.e . . 3 𝐸 = (ℝ^‘𝐼)
2 rrxlinesc.p . . 3 𝑃 = (ℝ ↑m 𝐼)
3 rrxlinesc.l . . 3 𝐿 = (LineM𝐸)
4 eqid 2821 . . 3 ( ·𝑠𝐸) = ( ·𝑠𝐸)
5 eqid 2821 . . 3 (+g𝐸) = (+g𝐸)
61, 2, 3, 4, 5rrxlines 44719 . 2 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦))}))
7 eqid 2821 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
8 simpll1 1208 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 ∈ Fin)
9 1red 10641 . . . . . . 7 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
10 simpr 487 . . . . . . 7 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
119, 10resubcld 11067 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
12 id 22 . . . . . . . . . . . 12 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
1312, 1, 7rrxbasefi 24012 . . . . . . . . . . 11 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼))
1413, 2syl6reqr 2875 . . . . . . . . . 10 (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸))
1514eleq2d 2898 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑥𝑃𝑥 ∈ (Base‘𝐸)))
1615biimpa 479 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑥𝑃) → 𝑥 ∈ (Base‘𝐸))
17163adant3 1128 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑥 ∈ (Base‘𝐸))
1817ad2antrr 724 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑥 ∈ (Base‘𝐸))
19 eldifi 4102 . . . . . . . . . 10 (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦𝑃)
2014eleq2d 2898 . . . . . . . . . 10 (𝐼 ∈ Fin → (𝑦𝑃𝑦 ∈ (Base‘𝐸)))
2119, 20syl5ib 246 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (Base‘𝐸)))
2221a1d 25 . . . . . . . 8 (𝐼 ∈ Fin → (𝑥𝑃 → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (Base‘𝐸))))
23223imp 1107 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦 ∈ (Base‘𝐸))
2423ad2antrr 724 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑦 ∈ (Base‘𝐸))
25143ad2ant1 1129 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑃 = (Base‘𝐸))
2625eleq2d 2898 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → (𝑝𝑃𝑝 ∈ (Base‘𝐸)))
2726biimpa 479 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑝 ∈ (Base‘𝐸))
2827adantr 483 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑝 ∈ (Base‘𝐸))
291, 7, 4, 8, 11, 18, 24, 28, 5, 10rrxplusgvscavalb 23997 . . . . 5 ((((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦)) ↔ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3029rexbidva 3296 . . . 4 (((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦)) ↔ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3130rabbidva 3478 . . 3 ((𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))})
3231mpoeq3dva 7230 . 2 (𝐼 ∈ Fin → (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠𝐸)𝑥)(+g𝐸)(𝑡( ·𝑠𝐸)𝑦))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
336, 32eqtrd 2856 1 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  cdif 3932  {csn 4566  cfv 6354  (class class class)co 7155  cmpo 7157  m cmap 8405  Fincfn 8508  cr 10535  1c1 10537   + caddc 10539   · cmul 10541  cmin 10869  Basecbs 16482  +gcplusg 16564   ·𝑠 cvsca 16568  ℝ^crrx 23985  LineMcline 44713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-rp 12389  df-fz 12892  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-0g 16714  df-prds 16720  df-pws 16722  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275  df-ghm 18355  df-cmn 18907  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-rnghom 19466  df-drng 19503  df-field 19504  df-subrg 19532  df-staf 19615  df-srng 19616  df-lmod 19635  df-lss 19703  df-sra 19943  df-rgmod 19944  df-cnfld 20545  df-refld 20748  df-dsmm 20875  df-frlm 20890  df-tng 23193  df-tcph 23772  df-rrx 23987  df-line 44715
This theorem is referenced by:  eenglngeehlnm  44725
  Copyright terms: Public domain W3C validator