| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxlinesc | Structured version Visualization version GIF version | ||
| Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension, expressed by their coordinates. (Contributed by AV, 13-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrxlinesc.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrxlinesc.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrxlinesc.l | ⊢ 𝐿 = (LineM‘𝐸) |
| Ref | Expression |
|---|---|
| rrxlinesc | ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxlinesc.e | . . 3 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 2 | rrxlinesc.p | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 3 | rrxlinesc.l | . . 3 ⊢ 𝐿 = (LineM‘𝐸) | |
| 4 | eqid 2731 | . . 3 ⊢ ( ·𝑠 ‘𝐸) = ( ·𝑠 ‘𝐸) | |
| 5 | eqid 2731 | . . 3 ⊢ (+g‘𝐸) = (+g‘𝐸) | |
| 6 | 1, 2, 3, 4, 5 | rrxlines 48773 | . 2 ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑥)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑦))})) |
| 7 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 8 | simpll1 1213 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 ∈ Fin) | |
| 9 | 1red 11113 | . . . . . . 7 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ) | |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) | |
| 11 | 9, 10 | resubcld 11545 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ) |
| 12 | id 22 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
| 13 | 12, 1, 7 | rrxbasefi 25337 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼)) |
| 14 | 2, 13 | eqtr4id 2785 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸)) |
| 15 | 14 | eleq2d 2817 | . . . . . . . . 9 ⊢ (𝐼 ∈ Fin → (𝑥 ∈ 𝑃 ↔ 𝑥 ∈ (Base‘𝐸))) |
| 16 | 15 | biimpa 476 | . . . . . . . 8 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ (Base‘𝐸)) |
| 17 | 16 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑥 ∈ (Base‘𝐸)) |
| 18 | 17 | ad2antrr 726 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑥 ∈ (Base‘𝐸)) |
| 19 | eldifi 4078 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ 𝑃) | |
| 20 | 14 | eleq2d 2817 | . . . . . . . . . 10 ⊢ (𝐼 ∈ Fin → (𝑦 ∈ 𝑃 ↔ 𝑦 ∈ (Base‘𝐸))) |
| 21 | 19, 20 | imbitrid 244 | . . . . . . . . 9 ⊢ (𝐼 ∈ Fin → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (Base‘𝐸))) |
| 22 | 21 | a1d 25 | . . . . . . . 8 ⊢ (𝐼 ∈ Fin → (𝑥 ∈ 𝑃 → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (Base‘𝐸)))) |
| 23 | 22 | 3imp 1110 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦 ∈ (Base‘𝐸)) |
| 24 | 23 | ad2antrr 726 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑦 ∈ (Base‘𝐸)) |
| 25 | 14 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑃 = (Base‘𝐸)) |
| 26 | 25 | eleq2d 2817 | . . . . . . . 8 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → (𝑝 ∈ 𝑃 ↔ 𝑝 ∈ (Base‘𝐸))) |
| 27 | 26 | biimpa 476 | . . . . . . 7 ⊢ (((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ (Base‘𝐸)) |
| 28 | 27 | adantr 480 | . . . . . 6 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝑝 ∈ (Base‘𝐸)) |
| 29 | 1, 7, 4, 8, 11, 18, 24, 28, 5, 10 | rrxplusgvscavalb 25322 | . . . . 5 ⊢ ((((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑥)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑦)) ↔ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 30 | 29 | rexbidva 3154 | . . . 4 ⊢ (((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑥)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑦)) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 31 | 30 | rabbidva 3401 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑥)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑦))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))}) |
| 32 | 31 | mpoeq3dva 7423 | . 2 ⊢ (𝐼 ∈ Fin → (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡)( ·𝑠 ‘𝐸)𝑥)(+g‘𝐸)(𝑡( ·𝑠 ‘𝐸)𝑦))}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) |
| 33 | 6, 32 | eqtrd 2766 | 1 ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ∖ cdif 3894 {csn 4573 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 Fincfn 8869 ℝcr 11005 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 Basecbs 17120 +gcplusg 17161 ·𝑠 cvsca 17165 ℝ^crrx 25310 LineMcline 48767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-ghm 19125 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-drng 20646 df-field 20647 df-staf 20754 df-srng 20755 df-lmod 20795 df-lss 20865 df-sra 21107 df-rgmod 21108 df-cnfld 21292 df-refld 21542 df-dsmm 21669 df-frlm 21684 df-tng 24499 df-tcph 25096 df-rrx 25312 df-line 48769 |
| This theorem is referenced by: eenglngeehlnm 48779 |
| Copyright terms: Public domain | W3C validator |