![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihjat4 | Structured version Visualization version GIF version |
Description: Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.) |
Ref | Expression |
---|---|
dihjat4.j | β’ β¨ = (joinβπΎ) |
dihjat4.h | β’ π» = (LHypβπΎ) |
dihjat4.i | β’ πΌ = ((DIsoHβπΎ)βπ) |
dihjat4.u | β’ π = ((DVecHβπΎ)βπ) |
dihjat4.s | β’ β = (LSSumβπ) |
dihjat4.a | β’ π΄ = (LSAtomsβπ) |
dihjat4.k | β’ (π β (πΎ β HL β§ π β π»)) |
dihjat4.x | β’ (π β π β ran πΌ) |
dihjat4.q | β’ (π β π β π΄) |
Ref | Expression |
---|---|
dihjat4 | β’ (π β (π β π) = (πΌβ((β‘πΌβπ) β¨ (β‘πΌβπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | dihjat4.h | . . 3 β’ π» = (LHypβπΎ) | |
3 | dihjat4.j | . . 3 β’ β¨ = (joinβπΎ) | |
4 | eqid 2730 | . . 3 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
5 | dihjat4.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
6 | dihjat4.s | . . 3 β’ β = (LSSumβπ) | |
7 | dihjat4.i | . . 3 β’ πΌ = ((DIsoHβπΎ)βπ) | |
8 | dihjat4.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
9 | dihjat4.x | . . . 4 β’ (π β π β ran πΌ) | |
10 | 1, 2, 7 | dihcnvcl 40445 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (β‘πΌβπ) β (BaseβπΎ)) |
11 | 8, 9, 10 | syl2anc 582 | . . 3 β’ (π β (β‘πΌβπ) β (BaseβπΎ)) |
12 | dihjat4.q | . . . 4 β’ (π β π β π΄) | |
13 | dihjat4.a | . . . . 5 β’ π΄ = (LSAtomsβπ) | |
14 | 4, 2, 5, 7, 13 | dihlatat 40511 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β π΄) β (β‘πΌβπ) β (AtomsβπΎ)) |
15 | 8, 12, 14 | syl2anc 582 | . . 3 β’ (π β (β‘πΌβπ) β (AtomsβπΎ)) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 15 | dihjat3 40606 | . 2 β’ (π β (πΌβ((β‘πΌβπ) β¨ (β‘πΌβπ))) = ((πΌβ(β‘πΌβπ)) β (πΌβ(β‘πΌβπ)))) |
17 | 2, 7 | dihcnvid2 40447 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (πΌβ(β‘πΌβπ)) = π) |
18 | 8, 9, 17 | syl2anc 582 | . . 3 β’ (π β (πΌβ(β‘πΌβπ)) = π) |
19 | 2, 5, 7, 13 | dih1dimat 40504 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ π β π΄) β π β ran πΌ) |
20 | 8, 12, 19 | syl2anc 582 | . . . 4 β’ (π β π β ran πΌ) |
21 | 2, 7 | dihcnvid2 40447 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (πΌβ(β‘πΌβπ)) = π) |
22 | 8, 20, 21 | syl2anc 582 | . . 3 β’ (π β (πΌβ(β‘πΌβπ)) = π) |
23 | 18, 22 | oveq12d 7429 | . 2 β’ (π β ((πΌβ(β‘πΌβπ)) β (πΌβ(β‘πΌβπ))) = (π β π)) |
24 | 16, 23 | eqtr2d 2771 | 1 β’ (π β (π β π) = (πΌβ((β‘πΌβπ) β¨ (β‘πΌβπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β‘ccnv 5674 ran crn 5676 βcfv 6542 (class class class)co 7411 Basecbs 17148 joincjn 18268 LSSumclsm 19543 LSAtomsclsa 38147 Atomscatm 38436 HLchlt 38523 LHypclh 39158 DVecHcdvh 40252 DIsoHcdih 40402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-riotaBAD 38126 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-undef 8260 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-0g 17391 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-cntz 19222 df-lsm 19545 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20502 df-lmod 20616 df-lss 20687 df-lsp 20727 df-lvec 20858 df-lsatoms 38149 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 df-lvols 38674 df-lines 38675 df-psubsp 38677 df-pmap 38678 df-padd 38970 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 df-trl 39333 df-tgrp 39917 df-tendo 39929 df-edring 39931 df-dveca 40177 df-disoa 40203 df-dvech 40253 df-dib 40313 df-dic 40347 df-dih 40403 df-doch 40522 df-djh 40569 |
This theorem is referenced by: dihjat6 40608 dvh4dimat 40612 |
Copyright terms: Public domain | W3C validator |