![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihjat6 | Structured version Visualization version GIF version |
Description: Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.) |
Ref | Expression |
---|---|
dihjat6.j | ⊢ ∨ = (join‘𝐾) |
dihjat6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihjat6.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihjat6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihjat6.s | ⊢ ⊕ = (LSSum‘𝑈) |
dihjat6.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
dihjat6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihjat6.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
dihjat6.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
Ref | Expression |
---|---|
dihjat6 | ⊢ (𝜑 → (◡𝐼‘(𝑋 ⊕ 𝑄)) = ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihjat6.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
2 | dihjat6.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dihjat6.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
4 | dihjat6.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | dihjat6.s | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
6 | dihjat6.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
7 | dihjat6.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | dihjat6.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
9 | dihjat6.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | dihjat4 40901 | . . 3 ⊢ (𝜑 → (𝑋 ⊕ 𝑄) = (𝐼‘((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄)))) |
11 | 10 | fveq2d 6896 | . 2 ⊢ (𝜑 → (◡𝐼‘(𝑋 ⊕ 𝑄)) = (◡𝐼‘(𝐼‘((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄))))) |
12 | 7 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
13 | 12 | hllatd 38831 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
14 | eqid 2728 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
15 | 14, 2, 3 | dihcnvcl 40739 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
16 | 7, 8, 15 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
17 | 2, 4, 3, 6 | dih1dimat 40798 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ ran 𝐼) |
18 | 7, 9, 17 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ran 𝐼) |
19 | 14, 2, 3 | dihcnvcl 40739 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ ran 𝐼) → (◡𝐼‘𝑄) ∈ (Base‘𝐾)) |
20 | 7, 18, 19 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (◡𝐼‘𝑄) ∈ (Base‘𝐾)) |
21 | 14, 1 | latjcl 18425 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (◡𝐼‘𝑋) ∈ (Base‘𝐾) ∧ (◡𝐼‘𝑄) ∈ (Base‘𝐾)) → ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄)) ∈ (Base‘𝐾)) |
22 | 13, 16, 20, 21 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄)) ∈ (Base‘𝐾)) |
23 | 14, 2, 3 | dihcnvid1 40740 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄)) ∈ (Base‘𝐾)) → (◡𝐼‘(𝐼‘((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄)))) = ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄))) |
24 | 7, 22, 23 | syl2anc 583 | . 2 ⊢ (𝜑 → (◡𝐼‘(𝐼‘((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄)))) = ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄))) |
25 | 11, 24 | eqtrd 2768 | 1 ⊢ (𝜑 → (◡𝐼‘(𝑋 ⊕ 𝑄)) = ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ◡ccnv 5672 ran crn 5674 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 joincjn 18297 Latclat 18417 LSSumclsm 19583 LSAtomsclsa 38441 HLchlt 38817 LHypclh 39452 DVecHcdvh 40546 DIsoHcdih 40696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-riotaBAD 38420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-tpos 8226 df-undef 8273 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-0g 17417 df-proset 18281 df-poset 18299 df-plt 18316 df-lub 18332 df-glb 18333 df-join 18334 df-meet 18335 df-p0 18411 df-p1 18412 df-lat 18418 df-clat 18485 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-grp 18887 df-minusg 18888 df-sbg 18889 df-subg 19072 df-cntz 19262 df-lsm 19585 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-oppr 20267 df-dvdsr 20290 df-unit 20291 df-invr 20321 df-dvr 20334 df-drng 20620 df-lmod 20739 df-lss 20810 df-lsp 20850 df-lvec 20982 df-lsatoms 38443 df-oposet 38643 df-ol 38645 df-oml 38646 df-covers 38733 df-ats 38734 df-atl 38765 df-cvlat 38789 df-hlat 38818 df-llines 38966 df-lplanes 38967 df-lvols 38968 df-lines 38969 df-psubsp 38971 df-pmap 38972 df-padd 39264 df-lhyp 39456 df-laut 39457 df-ldil 39572 df-ltrn 39573 df-trl 39627 df-tgrp 40211 df-tendo 40223 df-edring 40225 df-dveca 40471 df-disoa 40497 df-dvech 40547 df-dib 40607 df-dic 40641 df-dih 40697 df-doch 40816 df-djh 40863 |
This theorem is referenced by: dvh4dimat 40906 |
Copyright terms: Public domain | W3C validator |