| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihsmsnrn | Structured version Visualization version GIF version | ||
| Description: The subspace sum of two singleton spans is closed. (Contributed by NM, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| dihsmsnrn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihsmsnrn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihsmsnrn.v | ⊢ 𝑉 = (Base‘𝑈) |
| dihsmsnrn.p | ⊢ ⊕ = (LSSum‘𝑈) |
| dihsmsnrn.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| dihsmsnrn.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihsmsnrn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dihsmsnrn.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| dihsmsnrn.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dihsmsnrn | ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∈ ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihsmsnrn.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dihsmsnrn.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | dihsmsnrn.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | dihsmsnrn.p | . 2 ⊢ ⊕ = (LSSum‘𝑈) | |
| 5 | dihsmsnrn.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 6 | dihsmsnrn.i | . 2 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 7 | dihsmsnrn.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 8 | dihsmsnrn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 9 | 1, 2, 3, 5, 6 | dihlsprn 41440 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼) |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ ran 𝐼) |
| 11 | dihsmsnrn.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 10, 11 | dihsmsprn 41539 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∈ ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4577 ran crn 5622 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 LSSumclsm 19556 LSpanclspn 20914 HLchlt 39459 LHypclh 40093 DVecHcdvh 41187 DIsoHcdih 41337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-undef 8212 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-0g 17355 df-proset 18210 df-poset 18229 df-plt 18244 df-lub 18260 df-glb 18261 df-join 18262 df-meet 18263 df-p0 18339 df-p1 18340 df-lat 18348 df-clat 18415 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-cntz 19239 df-lsm 19558 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-drng 20656 df-lmod 20805 df-lss 20875 df-lsp 20915 df-lvec 21047 df-lsatoms 39085 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tgrp 40852 df-tendo 40864 df-edring 40866 df-dveca 41112 df-disoa 41138 df-dvech 41188 df-dib 41248 df-dic 41282 df-dih 41338 df-doch 41457 df-djh 41504 |
| This theorem is referenced by: lcfrlem23 41674 |
| Copyright terms: Public domain | W3C validator |