Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihjatb | Structured version Visualization version GIF version |
Description: Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014.) |
Ref | Expression |
---|---|
dihjatb.l | ⊢ ≤ = (le‘𝐾) |
dihjatb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihjatb.j | ⊢ ∨ = (join‘𝐾) |
dihjatb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihjatb.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihjatb.s | ⊢ ⊕ = (LSSum‘𝑈) |
dihjatb.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihjatb.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihjatb.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) |
dihjatb.q | ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) |
Ref | Expression |
---|---|
dihjatb | ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihjatb.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | dihjatb.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | dihjatb.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | dihjatb.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dihjatb.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | dihjatb.s | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
7 | dihjatb.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
8 | dihjatb.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | dihjatb.p | . . 3 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) | |
10 | dihjatb.q | . . 3 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dih2dimb 39164 | . 2 ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
12 | eqid 2739 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | 9 | simpld 498 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
14 | 12, 3 | atbase 37209 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
16 | 10 | simpld 498 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
17 | 12, 3 | atbase 37209 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
19 | 12, 4, 2, 5, 6, 7, 8, 15, 18 | dihsumssj 39328 | . 2 ⊢ (𝜑 → ((𝐼‘𝑃) ⊕ (𝐼‘𝑄)) ⊆ (𝐼‘(𝑃 ∨ 𝑄))) |
20 | 11, 19 | eqssd 3935 | 1 ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 class class class wbr 5070 ‘cfv 6415 (class class class)co 7252 Basecbs 16815 lecple 16870 joincjn 17919 LSSumclsm 19129 Atomscatm 37183 HLchlt 37270 LHypclh 37904 DVecHcdvh 38998 DIsoHcdih 39148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 ax-riotaBAD 36873 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-tpos 8010 df-undef 8057 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-n0 12139 df-z 12225 df-uz 12487 df-fz 13144 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-plusg 16876 df-mulr 16877 df-sca 16879 df-vsca 16880 df-0g 17044 df-proset 17903 df-poset 17921 df-plt 17938 df-lub 17954 df-glb 17955 df-join 17956 df-meet 17957 df-p0 18033 df-p1 18034 df-lat 18040 df-clat 18107 df-mgm 18216 df-sgrp 18265 df-mnd 18276 df-submnd 18321 df-grp 18470 df-minusg 18471 df-sbg 18472 df-subg 18642 df-cntz 18813 df-lsm 19131 df-cmn 19278 df-abl 19279 df-mgp 19611 df-ur 19628 df-ring 19675 df-oppr 19752 df-dvdsr 19773 df-unit 19774 df-invr 19804 df-dvr 19815 df-drng 19883 df-lmod 20015 df-lss 20084 df-lsp 20124 df-lvec 20255 df-lsatoms 36896 df-oposet 37096 df-ol 37098 df-oml 37099 df-covers 37186 df-ats 37187 df-atl 37218 df-cvlat 37242 df-hlat 37271 df-llines 37418 df-lplanes 37419 df-lvols 37420 df-lines 37421 df-psubsp 37423 df-pmap 37424 df-padd 37716 df-lhyp 37908 df-laut 37909 df-ldil 38024 df-ltrn 38025 df-trl 38079 df-tgrp 38663 df-tendo 38675 df-edring 38677 df-dveca 38923 df-disoa 38949 df-dvech 38999 df-dib 39059 df-dic 39093 df-dih 39149 df-doch 39268 df-djh 39315 |
This theorem is referenced by: dihjat 39343 |
Copyright terms: Public domain | W3C validator |