Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihf11 Structured version   Visualization version   GIF version

Theorem dihf11 38937
Description: The isomorphism H for a lattice 𝐾 is a one-to-one function. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.)
Hypotheses
Ref Expression
dihf11.b 𝐵 = (Base‘𝐾)
dihf11.h 𝐻 = (LHyp‘𝐾)
dihf11.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihf11.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihf11.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
dihf11 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1𝑆)

Proof of Theorem dihf11
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihf11.b . . 3 𝐵 = (Base‘𝐾)
2 dihf11.h . . 3 𝐻 = (LHyp‘𝐾)
3 dihf11.i . . 3 𝐼 = ((DIsoH‘𝐾)‘𝑊)
4 dihf11.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dihf11.s . . 3 𝑆 = (LSubSp‘𝑈)
61, 2, 3, 4, 5dihf11lem 38936 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵𝑆)
71, 2, 3dih11 38935 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝐵𝑦𝐵) → ((𝐼𝑥) = (𝐼𝑦) ↔ 𝑥 = 𝑦))
87biimpd 232 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝐵𝑦𝐵) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
983expb 1121 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
109ralrimivva 3104 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑥𝐵𝑦𝐵 ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
11 dff13 7037 . 2 (𝐼:𝐵1-1𝑆 ↔ (𝐼:𝐵𝑆 ∧ ∀𝑥𝐵𝑦𝐵 ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
126, 10, 11sylanbrc 586 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3054  wf 6346  1-1wf1 6347  cfv 6350  Basecbs 16599  LSubSpclss 19835  HLchlt 37020  LHypclh 37654  DVecHcdvh 38748  DIsoHcdih 38898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705  ax-riotaBAD 36623
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-tpos 7934  df-undef 7981  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-er 8333  df-map 8452  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-nn 11730  df-2 11792  df-3 11793  df-4 11794  df-5 11795  df-6 11796  df-n0 11990  df-z 12076  df-uz 12338  df-fz 12995  df-struct 16601  df-ndx 16602  df-slot 16603  df-base 16605  df-sets 16606  df-ress 16607  df-plusg 16694  df-mulr 16695  df-sca 16697  df-vsca 16698  df-0g 16831  df-proset 17667  df-poset 17685  df-plt 17697  df-lub 17713  df-glb 17714  df-join 17715  df-meet 17716  df-p0 17778  df-p1 17779  df-lat 17785  df-clat 17847  df-mgm 17981  df-sgrp 18030  df-mnd 18041  df-submnd 18086  df-grp 18235  df-minusg 18236  df-sbg 18237  df-subg 18407  df-cntz 18578  df-lsm 18892  df-cmn 19039  df-abl 19040  df-mgp 19372  df-ur 19384  df-ring 19431  df-oppr 19508  df-dvdsr 19526  df-unit 19527  df-invr 19557  df-dvr 19568  df-drng 19636  df-lmod 19768  df-lss 19836  df-lsp 19876  df-lvec 20007  df-oposet 36846  df-ol 36848  df-oml 36849  df-covers 36936  df-ats 36937  df-atl 36968  df-cvlat 36992  df-hlat 37021  df-llines 37168  df-lplanes 37169  df-lvols 37170  df-lines 37171  df-psubsp 37173  df-pmap 37174  df-padd 37466  df-lhyp 37658  df-laut 37659  df-ldil 37774  df-ltrn 37775  df-trl 37829  df-tendo 38425  df-edring 38427  df-disoa 38699  df-dvech 38749  df-dib 38809  df-dic 38843  df-dih 38899
This theorem is referenced by:  dihfn  38938  dihcl  38940  dihcnvcl  38941  dihcnvid1  38942  dihcnvid2  38943  dih1dimatlem  38999  dihlspsnat  39003  dihglblem6  39010  dochocss  39036  dochnoncon  39061
  Copyright terms: Public domain W3C validator