| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayleyhamilton0 | Structured version Visualization version GIF version | ||
| Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton 22805 provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT 22806)! (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| cayleyhamilton0.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cayleyhamilton0.b | ⊢ 𝐵 = (Base‘𝐴) |
| cayleyhamilton0.0 | ⊢ 0 = (0g‘𝐴) |
| cayleyhamilton0.1 | ⊢ 1 = (1r‘𝐴) |
| cayleyhamilton0.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| cayleyhamilton0.e1 | ⊢ ↑ = (.g‘(mulGrp‘𝐴)) |
| cayleyhamilton0.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cayleyhamilton0.k | ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) |
| cayleyhamilton0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cayleyhamilton0.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| cayleyhamilton0.r | ⊢ × = (.r‘𝑌) |
| cayleyhamilton0.s | ⊢ − = (-g‘𝑌) |
| cayleyhamilton0.z | ⊢ 𝑍 = (0g‘𝑌) |
| cayleyhamilton0.w | ⊢ 𝑊 = (Base‘𝑌) |
| cayleyhamilton0.e2 | ⊢ 𝐸 = (.g‘(mulGrp‘𝑌)) |
| cayleyhamilton0.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| cayleyhamilton0.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
| cayleyhamilton0.u | ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) |
| Ref | Expression |
|---|---|
| cayleyhamilton0 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cayleyhamilton0.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | cayleyhamilton0.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | cayleyhamilton0.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | cayleyhamilton0.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 5 | cayleyhamilton0.r | . . 3 ⊢ × = (.r‘𝑌) | |
| 6 | cayleyhamilton0.s | . . 3 ⊢ − = (-g‘𝑌) | |
| 7 | cayleyhamilton0.z | . . 3 ⊢ 𝑍 = (0g‘𝑌) | |
| 8 | cayleyhamilton0.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 9 | cayleyhamilton0.c | . . 3 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 10 | eqid 2731 | . . 3 ⊢ (𝐶‘𝑀) = (𝐶‘𝑀) | |
| 11 | cayleyhamilton0.g | . . 3 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
| 12 | cayleyhamilton0.w | . . 3 ⊢ 𝑊 = (Base‘𝑌) | |
| 13 | cayleyhamilton0.1 | . . 3 ⊢ 1 = (1r‘𝐴) | |
| 14 | cayleyhamilton0.m | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
| 15 | cayleyhamilton0.u | . . 3 ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) | |
| 16 | cayleyhamilton0.e1 | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝐴)) | |
| 17 | cayleyhamilton0.e2 | . . 3 ⊢ 𝐸 = (.g‘(mulGrp‘𝑌)) | |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | cayhamlem4 22803 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |
| 19 | cayleyhamilton0.k | . . . . . . . . . . . . 13 ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) | |
| 20 | 19 | eqcomi 2740 | . . . . . . . . . . . 12 ⊢ (coe1‘(𝐶‘𝑀)) = 𝐾 |
| 21 | 20 | a1i 11 | . . . . . . . . . . 11 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝐶‘𝑀)) = 𝐾) |
| 22 | 21 | fveq1d 6824 | . . . . . . . . . 10 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐶‘𝑀))‘𝑛) = (𝐾‘𝑛)) |
| 23 | 22 | oveq1d 7361 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀))) |
| 24 | 23 | mpteq2dva 5182 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) |
| 25 | 24 | oveq2d 7362 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀))))) |
| 26 | 25 | eqeq1d 2733 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) ↔ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))))) |
| 27 | 26 | biimpa 476 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |
| 28 | oveq1 7353 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑙 → (𝑛𝐸(𝑇‘𝑀)) = (𝑙𝐸(𝑇‘𝑀))) | |
| 29 | fveq2 6822 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑙 → (𝐺‘𝑛) = (𝐺‘𝑙)) | |
| 30 | 28, 29 | oveq12d 7364 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑙 → ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)) = ((𝑙𝐸(𝑇‘𝑀)) × (𝐺‘𝑙))) |
| 31 | 30 | cbvmptv 5193 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))) = (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇‘𝑀)) × (𝐺‘𝑙))) |
| 32 | 31 | oveq2i 7357 | . . . . . . . 8 ⊢ (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))) = (𝑌 Σg (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇‘𝑀)) × (𝐺‘𝑙)))) |
| 33 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 17 | cayhamlem1 22781 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇‘𝑀)) × (𝐺‘𝑙)))) = 𝑍) |
| 34 | 32, 33 | eqtrid 2778 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))) = 𝑍) |
| 35 | fveq2 6822 | . . . . . . . 8 ⊢ ((𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))) = 𝑍 → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) = (𝑈‘𝑍)) | |
| 36 | crngring 20163 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 37 | 36 | anim2i 617 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 38 | 37 | 3adant3 1132 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 39 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
| 40 | 1, 15, 3, 4, 39, 7 | m2cpminv0 22676 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈‘𝑍) = (0g‘𝐴)) |
| 41 | 38, 40 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈‘𝑍) = (0g‘𝐴)) |
| 42 | cayleyhamilton0.0 | . . . . . . . . . 10 ⊢ 0 = (0g‘𝐴) | |
| 43 | 41, 42 | eqtr4di 2784 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈‘𝑍) = 0 ) |
| 44 | 43 | adantr 480 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑈‘𝑍) = 0 ) |
| 45 | 35, 44 | sylan9eqr 2788 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))) = 𝑍) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) = 0 ) |
| 46 | 34, 45 | mpdan 687 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) = 0 ) |
| 47 | 46 | adantr 480 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) = 0 ) |
| 48 | 27, 47 | eqtrd 2766 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| 49 | 48 | ex 412 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) |
| 50 | 49 | rexlimdvva 3189 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) |
| 51 | 18, 50 | mpd 15 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 − cmin 11344 ℕcn 12125 ℕ0cn0 12381 ...cfz 13407 Basecbs 17120 .rcmulr 17162 ·𝑠 cvsca 17165 0gc0g 17343 Σg cgsu 17344 -gcsg 18848 .gcmg 18980 mulGrpcmgp 20058 1rcur 20099 Ringcrg 20151 CRingccrg 20152 Poly1cpl1 22089 coe1cco1 22090 Mat cmat 22322 matToPolyMat cmat2pmat 22619 cPolyMatToMat ccpmat2mat 22620 CharPlyMat cchpmat 22741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-cur 8197 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-gim 19171 df-cntz 19229 df-oppg 19258 df-symg 19282 df-pmtr 19354 df-psgn 19403 df-evpm 19404 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-drng 20646 df-lmod 20795 df-lss 20865 df-sra 21107 df-rgmod 21108 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-dsmm 21669 df-frlm 21684 df-assa 21790 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 df-mamu 22306 df-mat 22323 df-mdet 22500 df-madu 22549 df-cpmat 22621 df-mat2pmat 22622 df-cpmat2mat 22623 df-decpmat 22678 df-pm2mp 22708 df-chpmat 22742 |
| This theorem is referenced by: cayleyhamilton 22805 |
| Copyright terms: Public domain | W3C validator |