Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cayleyhamilton0 | Structured version Visualization version GIF version |
Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton 22039 provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT 22040)! (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
cayleyhamilton0.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cayleyhamilton0.b | ⊢ 𝐵 = (Base‘𝐴) |
cayleyhamilton0.0 | ⊢ 0 = (0g‘𝐴) |
cayleyhamilton0.1 | ⊢ 1 = (1r‘𝐴) |
cayleyhamilton0.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
cayleyhamilton0.e1 | ⊢ ↑ = (.g‘(mulGrp‘𝐴)) |
cayleyhamilton0.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cayleyhamilton0.k | ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) |
cayleyhamilton0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cayleyhamilton0.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cayleyhamilton0.r | ⊢ × = (.r‘𝑌) |
cayleyhamilton0.s | ⊢ − = (-g‘𝑌) |
cayleyhamilton0.z | ⊢ 𝑍 = (0g‘𝑌) |
cayleyhamilton0.w | ⊢ 𝑊 = (Base‘𝑌) |
cayleyhamilton0.e2 | ⊢ 𝐸 = (.g‘(mulGrp‘𝑌)) |
cayleyhamilton0.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cayleyhamilton0.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
cayleyhamilton0.u | ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) |
Ref | Expression |
---|---|
cayleyhamilton0 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayleyhamilton0.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | cayleyhamilton0.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | cayleyhamilton0.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | cayleyhamilton0.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
5 | cayleyhamilton0.r | . . 3 ⊢ × = (.r‘𝑌) | |
6 | cayleyhamilton0.s | . . 3 ⊢ − = (-g‘𝑌) | |
7 | cayleyhamilton0.z | . . 3 ⊢ 𝑍 = (0g‘𝑌) | |
8 | cayleyhamilton0.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
9 | cayleyhamilton0.c | . . 3 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
10 | eqid 2738 | . . 3 ⊢ (𝐶‘𝑀) = (𝐶‘𝑀) | |
11 | cayleyhamilton0.g | . . 3 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
12 | cayleyhamilton0.w | . . 3 ⊢ 𝑊 = (Base‘𝑌) | |
13 | cayleyhamilton0.1 | . . 3 ⊢ 1 = (1r‘𝐴) | |
14 | cayleyhamilton0.m | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
15 | cayleyhamilton0.u | . . 3 ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) | |
16 | cayleyhamilton0.e1 | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝐴)) | |
17 | cayleyhamilton0.e2 | . . 3 ⊢ 𝐸 = (.g‘(mulGrp‘𝑌)) | |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | cayhamlem4 22037 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |
19 | cayleyhamilton0.k | . . . . . . . . . . . . 13 ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) | |
20 | 19 | eqcomi 2747 | . . . . . . . . . . . 12 ⊢ (coe1‘(𝐶‘𝑀)) = 𝐾 |
21 | 20 | a1i 11 | . . . . . . . . . . 11 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝐶‘𝑀)) = 𝐾) |
22 | 21 | fveq1d 6776 | . . . . . . . . . 10 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐶‘𝑀))‘𝑛) = (𝐾‘𝑛)) |
23 | 22 | oveq1d 7290 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀))) |
24 | 23 | mpteq2dva 5174 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) |
25 | 24 | oveq2d 7291 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀))))) |
26 | 25 | eqeq1d 2740 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) ↔ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))))) |
27 | 26 | biimpa 477 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |
28 | oveq1 7282 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑙 → (𝑛𝐸(𝑇‘𝑀)) = (𝑙𝐸(𝑇‘𝑀))) | |
29 | fveq2 6774 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑙 → (𝐺‘𝑛) = (𝐺‘𝑙)) | |
30 | 28, 29 | oveq12d 7293 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑙 → ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)) = ((𝑙𝐸(𝑇‘𝑀)) × (𝐺‘𝑙))) |
31 | 30 | cbvmptv 5187 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))) = (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇‘𝑀)) × (𝐺‘𝑙))) |
32 | 31 | oveq2i 7286 | . . . . . . . 8 ⊢ (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))) = (𝑌 Σg (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇‘𝑀)) × (𝐺‘𝑙)))) |
33 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 17 | cayhamlem1 22015 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇‘𝑀)) × (𝐺‘𝑙)))) = 𝑍) |
34 | 32, 33 | eqtrid 2790 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))) = 𝑍) |
35 | fveq2 6774 | . . . . . . . 8 ⊢ ((𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))) = 𝑍 → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) = (𝑈‘𝑍)) | |
36 | crngring 19795 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
37 | 36 | anim2i 617 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
38 | 37 | 3adant3 1131 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
39 | eqid 2738 | . . . . . . . . . . . 12 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
40 | 1, 15, 3, 4, 39, 7 | m2cpminv0 21910 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈‘𝑍) = (0g‘𝐴)) |
41 | 38, 40 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈‘𝑍) = (0g‘𝐴)) |
42 | cayleyhamilton0.0 | . . . . . . . . . 10 ⊢ 0 = (0g‘𝐴) | |
43 | 41, 42 | eqtr4di 2796 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈‘𝑍) = 0 ) |
44 | 43 | adantr 481 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑈‘𝑍) = 0 ) |
45 | 35, 44 | sylan9eqr 2800 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))) = 𝑍) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) = 0 ) |
46 | 34, 45 | mpdan 684 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) = 0 ) |
47 | 46 | adantr 481 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) = 0 ) |
48 | 27, 47 | eqtrd 2778 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
49 | 48 | ex 413 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) |
50 | 49 | rexlimdvva 3223 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) |
51 | 18, 50 | mpd 15 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Fincfn 8733 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 − cmin 11205 ℕcn 11973 ℕ0cn0 12233 ...cfz 13239 Basecbs 16912 .rcmulr 16963 ·𝑠 cvsca 16966 0gc0g 17150 Σg cgsu 17151 -gcsg 18579 .gcmg 18700 mulGrpcmgp 19720 1rcur 19737 Ringcrg 19783 CRingccrg 19784 Poly1cpl1 21348 coe1cco1 21349 Mat cmat 21554 matToPolyMat cmat2pmat 21853 cPolyMatToMat ccpmat2mat 21854 CharPlyMat cchpmat 21975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1507 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-cur 8083 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-word 14218 df-lsw 14266 df-concat 14274 df-s1 14301 df-substr 14354 df-pfx 14384 df-splice 14463 df-reverse 14472 df-s2 14561 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-efmnd 18508 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-gim 18875 df-cntz 18923 df-oppg 18950 df-symg 18975 df-pmtr 19050 df-psgn 19099 df-evpm 19100 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-srg 19742 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-rnghom 19959 df-drng 19993 df-subrg 20022 df-lmod 20125 df-lss 20194 df-sra 20434 df-rgmod 20435 df-cnfld 20598 df-zring 20671 df-zrh 20705 df-dsmm 20939 df-frlm 20954 df-assa 21060 df-ascl 21062 df-psr 21112 df-mvr 21113 df-mpl 21114 df-opsr 21116 df-psr1 21351 df-vr1 21352 df-ply1 21353 df-coe1 21354 df-mamu 21533 df-mat 21555 df-mdet 21734 df-madu 21783 df-cpmat 21855 df-mat2pmat 21856 df-cpmat2mat 21857 df-decpmat 21912 df-pm2mp 21942 df-chpmat 21976 |
This theorem is referenced by: cayleyhamilton 22039 |
Copyright terms: Public domain | W3C validator |