MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleyhamilton0 Structured version   Visualization version   GIF version

Theorem cayleyhamilton0 22143
Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton 22144 provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT 22145)! (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
cayleyhamilton0.a 𝐴 = (𝑁 Mat 𝑅)
cayleyhamilton0.b 𝐵 = (Base‘𝐴)
cayleyhamilton0.0 0 = (0g𝐴)
cayleyhamilton0.1 1 = (1r𝐴)
cayleyhamilton0.m = ( ·𝑠𝐴)
cayleyhamilton0.e1 = (.g‘(mulGrp‘𝐴))
cayleyhamilton0.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cayleyhamilton0.k 𝐾 = (coe1‘(𝐶𝑀))
cayleyhamilton0.p 𝑃 = (Poly1𝑅)
cayleyhamilton0.y 𝑌 = (𝑁 Mat 𝑃)
cayleyhamilton0.r × = (.r𝑌)
cayleyhamilton0.s = (-g𝑌)
cayleyhamilton0.z 𝑍 = (0g𝑌)
cayleyhamilton0.w 𝑊 = (Base‘𝑌)
cayleyhamilton0.e2 𝐸 = (.g‘(mulGrp‘𝑌))
cayleyhamilton0.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayleyhamilton0.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cayleyhamilton0.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
cayleyhamilton0 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
Distinct variable groups:   𝐴,𝑏,𝑛,𝑠   𝐵,𝑏,𝑛,𝑠   𝐶,𝑛   𝑛,𝐸   𝑛,𝐺   𝐾,𝑏,𝑠   𝑀,𝑏,𝑛,𝑠   𝑁,𝑏,𝑛,𝑠   𝑃,𝑏,𝑛,𝑠   𝑅,𝑏,𝑛,𝑠   𝑇,𝑏,𝑛,𝑠   𝑈,𝑛   𝑛,𝑊   𝑌,𝑏,𝑛,𝑠   𝑛,𝑍   ,𝑏,𝑛,𝑠   ,𝑏,𝑛,𝑠   0 ,𝑏,𝑠   1 ,𝑛   × ,𝑛   ,𝑏,𝑛,𝑠
Allowed substitution hints:   𝐶(𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐸(𝑠,𝑏)   𝐺(𝑠,𝑏)   𝐾(𝑛)   𝑊(𝑠,𝑏)   0 (𝑛)   𝑍(𝑠,𝑏)

Proof of Theorem cayleyhamilton0
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 cayleyhamilton0.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cayleyhamilton0.b . . 3 𝐵 = (Base‘𝐴)
3 cayleyhamilton0.p . . 3 𝑃 = (Poly1𝑅)
4 cayleyhamilton0.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cayleyhamilton0.r . . 3 × = (.r𝑌)
6 cayleyhamilton0.s . . 3 = (-g𝑌)
7 cayleyhamilton0.z . . 3 𝑍 = (0g𝑌)
8 cayleyhamilton0.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
9 cayleyhamilton0.c . . 3 𝐶 = (𝑁 CharPlyMat 𝑅)
10 eqid 2737 . . 3 (𝐶𝑀) = (𝐶𝑀)
11 cayleyhamilton0.g . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
12 cayleyhamilton0.w . . 3 𝑊 = (Base‘𝑌)
13 cayleyhamilton0.1 . . 3 1 = (1r𝐴)
14 cayleyhamilton0.m . . 3 = ( ·𝑠𝐴)
15 cayleyhamilton0.u . . 3 𝑈 = (𝑁 cPolyMatToMat 𝑅)
16 cayleyhamilton0.e1 . . 3 = (.g‘(mulGrp‘𝐴))
17 cayleyhamilton0.e2 . . 3 𝐸 = (.g‘(mulGrp‘𝑌))
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cayhamlem4 22142 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
19 cayleyhamilton0.k . . . . . . . . . . . . 13 𝐾 = (coe1‘(𝐶𝑀))
2019eqcomi 2746 . . . . . . . . . . . 12 (coe1‘(𝐶𝑀)) = 𝐾
2120a1i 11 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝐶𝑀)) = 𝐾)
2221fveq1d 6831 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐶𝑀))‘𝑛) = (𝐾𝑛))
2322oveq1d 7356 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)) = ((𝐾𝑛) (𝑛 𝑀)))
2423mpteq2dva 5196 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀))))
2524oveq2d 7357 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))))
2625eqeq1d 2739 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) ↔ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))))
2726biimpa 478 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
28 oveq1 7348 . . . . . . . . . . 11 (𝑛 = 𝑙 → (𝑛𝐸(𝑇𝑀)) = (𝑙𝐸(𝑇𝑀)))
29 fveq2 6829 . . . . . . . . . . 11 (𝑛 = 𝑙 → (𝐺𝑛) = (𝐺𝑙))
3028, 29oveq12d 7359 . . . . . . . . . 10 (𝑛 = 𝑙 → ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)) = ((𝑙𝐸(𝑇𝑀)) × (𝐺𝑙)))
3130cbvmptv 5209 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))) = (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇𝑀)) × (𝐺𝑙)))
3231oveq2i 7352 . . . . . . . 8 (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))) = (𝑌 Σg (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇𝑀)) × (𝐺𝑙))))
331, 2, 3, 4, 5, 6, 7, 8, 11, 17cayhamlem1 22120 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇𝑀)) × (𝐺𝑙)))) = 𝑍)
3432, 33eqtrid 2789 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))) = 𝑍)
35 fveq2 6829 . . . . . . . 8 ((𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))) = 𝑍 → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) = (𝑈𝑍))
36 crngring 19889 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3736anim2i 618 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
38373adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
39 eqid 2737 . . . . . . . . . . . 12 (0g𝐴) = (0g𝐴)
401, 15, 3, 4, 39, 7m2cpminv0 22015 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈𝑍) = (0g𝐴))
4138, 40syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈𝑍) = (0g𝐴))
42 cayleyhamilton0.0 . . . . . . . . . 10 0 = (0g𝐴)
4341, 42eqtr4di 2795 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈𝑍) = 0 )
4443adantr 482 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝑍) = 0 )
4535, 44sylan9eqr 2799 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))) = 𝑍) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) = 0 )
4634, 45mpdan 685 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) = 0 )
4746adantr 482 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) = 0 )
4827, 47eqtrd 2777 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
4948ex 414 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 ))
5049rexlimdvva 3202 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 ))
5118, 50mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wrex 3071  ifcif 4477   class class class wbr 5096  cmpt 5179  cfv 6483  (class class class)co 7341  m cmap 8690  Fincfn 8808  0cc0 10976  1c1 10977   + caddc 10979   < clt 11114  cmin 11310  cn 12078  0cn0 12338  ...cfz 13344  Basecbs 17009  .rcmulr 17060   ·𝑠 cvsca 17063  0gc0g 17247   Σg cgsu 17248  -gcsg 18675  .gcmg 18796  mulGrpcmgp 19814  1rcur 19831  Ringcrg 19877  CRingccrg 19878  Poly1cpl1 21453  coe1cco1 21454   Mat cmat 21659   matToPolyMat cmat2pmat 21958   cPolyMatToMat ccpmat2mat 21959   CharPlyMat cchpmat 22080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-addf 11055  ax-mulf 11056
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4857  df-int 4899  df-iun 4947  df-iin 4948  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-se 5580  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-isom 6492  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7599  df-ofr 7600  df-om 7785  df-1st 7903  df-2nd 7904  df-supp 8052  df-tpos 8116  df-cur 8157  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-2o 8372  df-er 8573  df-map 8692  df-pm 8693  df-ixp 8761  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-fsupp 9231  df-sup 9303  df-oi 9371  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-5 12144  df-6 12145  df-7 12146  df-8 12147  df-9 12148  df-n0 12339  df-xnn0 12411  df-z 12425  df-dec 12543  df-uz 12688  df-rp 12836  df-fz 13345  df-fzo 13488  df-seq 13827  df-exp 13888  df-hash 14150  df-word 14322  df-lsw 14370  df-concat 14378  df-s1 14403  df-substr 14452  df-pfx 14482  df-splice 14561  df-reverse 14570  df-s2 14660  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-0g 17249  df-gsum 17250  df-prds 17255  df-pws 17257  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-submnd 18528  df-efmnd 18604  df-grp 18676  df-minusg 18677  df-sbg 18678  df-mulg 18797  df-subg 18848  df-ghm 18928  df-gim 18971  df-cntz 19019  df-oppg 19046  df-symg 19071  df-pmtr 19146  df-psgn 19195  df-evpm 19196  df-cmn 19483  df-abl 19484  df-mgp 19815  df-ur 19832  df-srg 19836  df-ring 19879  df-cring 19880  df-oppr 19956  df-dvdsr 19977  df-unit 19978  df-invr 20008  df-dvr 20019  df-rnghom 20053  df-drng 20094  df-subrg 20126  df-lmod 20230  df-lss 20299  df-sra 20539  df-rgmod 20540  df-cnfld 20703  df-zring 20776  df-zrh 20810  df-dsmm 21044  df-frlm 21059  df-assa 21165  df-ascl 21167  df-psr 21217  df-mvr 21218  df-mpl 21219  df-opsr 21221  df-psr1 21456  df-vr1 21457  df-ply1 21458  df-coe1 21459  df-mamu 21638  df-mat 21660  df-mdet 21839  df-madu 21888  df-cpmat 21960  df-mat2pmat 21961  df-cpmat2mat 21962  df-decpmat 22017  df-pm2mp 22047  df-chpmat 22081
This theorem is referenced by:  cayleyhamilton  22144
  Copyright terms: Public domain W3C validator