MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleyhamilton0 Structured version   Visualization version   GIF version

Theorem cayleyhamilton0 22774
Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton 22775 provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT 22776)! (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
cayleyhamilton0.a 𝐴 = (𝑁 Mat 𝑅)
cayleyhamilton0.b 𝐵 = (Base‘𝐴)
cayleyhamilton0.0 0 = (0g𝐴)
cayleyhamilton0.1 1 = (1r𝐴)
cayleyhamilton0.m = ( ·𝑠𝐴)
cayleyhamilton0.e1 = (.g‘(mulGrp‘𝐴))
cayleyhamilton0.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cayleyhamilton0.k 𝐾 = (coe1‘(𝐶𝑀))
cayleyhamilton0.p 𝑃 = (Poly1𝑅)
cayleyhamilton0.y 𝑌 = (𝑁 Mat 𝑃)
cayleyhamilton0.r × = (.r𝑌)
cayleyhamilton0.s = (-g𝑌)
cayleyhamilton0.z 𝑍 = (0g𝑌)
cayleyhamilton0.w 𝑊 = (Base‘𝑌)
cayleyhamilton0.e2 𝐸 = (.g‘(mulGrp‘𝑌))
cayleyhamilton0.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayleyhamilton0.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cayleyhamilton0.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
cayleyhamilton0 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
Distinct variable groups:   𝐴,𝑏,𝑛,𝑠   𝐵,𝑏,𝑛,𝑠   𝐶,𝑛   𝑛,𝐸   𝑛,𝐺   𝐾,𝑏,𝑠   𝑀,𝑏,𝑛,𝑠   𝑁,𝑏,𝑛,𝑠   𝑃,𝑏,𝑛,𝑠   𝑅,𝑏,𝑛,𝑠   𝑇,𝑏,𝑛,𝑠   𝑈,𝑛   𝑛,𝑊   𝑌,𝑏,𝑛,𝑠   𝑛,𝑍   ,𝑏,𝑛,𝑠   ,𝑏,𝑛,𝑠   0 ,𝑏,𝑠   1 ,𝑛   × ,𝑛   ,𝑏,𝑛,𝑠
Allowed substitution hints:   𝐶(𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐸(𝑠,𝑏)   𝐺(𝑠,𝑏)   𝐾(𝑛)   𝑊(𝑠,𝑏)   0 (𝑛)   𝑍(𝑠,𝑏)

Proof of Theorem cayleyhamilton0
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 cayleyhamilton0.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cayleyhamilton0.b . . 3 𝐵 = (Base‘𝐴)
3 cayleyhamilton0.p . . 3 𝑃 = (Poly1𝑅)
4 cayleyhamilton0.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cayleyhamilton0.r . . 3 × = (.r𝑌)
6 cayleyhamilton0.s . . 3 = (-g𝑌)
7 cayleyhamilton0.z . . 3 𝑍 = (0g𝑌)
8 cayleyhamilton0.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
9 cayleyhamilton0.c . . 3 𝐶 = (𝑁 CharPlyMat 𝑅)
10 eqid 2729 . . 3 (𝐶𝑀) = (𝐶𝑀)
11 cayleyhamilton0.g . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
12 cayleyhamilton0.w . . 3 𝑊 = (Base‘𝑌)
13 cayleyhamilton0.1 . . 3 1 = (1r𝐴)
14 cayleyhamilton0.m . . 3 = ( ·𝑠𝐴)
15 cayleyhamilton0.u . . 3 𝑈 = (𝑁 cPolyMatToMat 𝑅)
16 cayleyhamilton0.e1 . . 3 = (.g‘(mulGrp‘𝐴))
17 cayleyhamilton0.e2 . . 3 𝐸 = (.g‘(mulGrp‘𝑌))
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cayhamlem4 22773 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
19 cayleyhamilton0.k . . . . . . . . . . . . 13 𝐾 = (coe1‘(𝐶𝑀))
2019eqcomi 2738 . . . . . . . . . . . 12 (coe1‘(𝐶𝑀)) = 𝐾
2120a1i 11 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝐶𝑀)) = 𝐾)
2221fveq1d 6824 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐶𝑀))‘𝑛) = (𝐾𝑛))
2322oveq1d 7364 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)) = ((𝐾𝑛) (𝑛 𝑀)))
2423mpteq2dva 5185 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀))))
2524oveq2d 7365 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))))
2625eqeq1d 2731 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) ↔ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))))
2726biimpa 476 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
28 oveq1 7356 . . . . . . . . . . 11 (𝑛 = 𝑙 → (𝑛𝐸(𝑇𝑀)) = (𝑙𝐸(𝑇𝑀)))
29 fveq2 6822 . . . . . . . . . . 11 (𝑛 = 𝑙 → (𝐺𝑛) = (𝐺𝑙))
3028, 29oveq12d 7367 . . . . . . . . . 10 (𝑛 = 𝑙 → ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)) = ((𝑙𝐸(𝑇𝑀)) × (𝐺𝑙)))
3130cbvmptv 5196 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))) = (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇𝑀)) × (𝐺𝑙)))
3231oveq2i 7360 . . . . . . . 8 (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))) = (𝑌 Σg (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇𝑀)) × (𝐺𝑙))))
331, 2, 3, 4, 5, 6, 7, 8, 11, 17cayhamlem1 22751 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑙 ∈ ℕ0 ↦ ((𝑙𝐸(𝑇𝑀)) × (𝐺𝑙)))) = 𝑍)
3432, 33eqtrid 2776 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))) = 𝑍)
35 fveq2 6822 . . . . . . . 8 ((𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))) = 𝑍 → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) = (𝑈𝑍))
36 crngring 20130 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3736anim2i 617 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
38373adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
39 eqid 2729 . . . . . . . . . . . 12 (0g𝐴) = (0g𝐴)
401, 15, 3, 4, 39, 7m2cpminv0 22646 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈𝑍) = (0g𝐴))
4138, 40syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈𝑍) = (0g𝐴))
42 cayleyhamilton0.0 . . . . . . . . . 10 0 = (0g𝐴)
4341, 42eqtr4di 2782 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈𝑍) = 0 )
4443adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝑍) = 0 )
4535, 44sylan9eqr 2786 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))) = 𝑍) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) = 0 )
4634, 45mpdan 687 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) = 0 )
4746adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))) → (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) = 0 )
4827, 47eqtrd 2764 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
4948ex 412 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 ))
5049rexlimdvva 3186 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 ))
5118, 50mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  ifcif 4476   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  m cmap 8753  Fincfn 8872  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cmin 11347  cn 12128  0cn0 12384  ...cfz 13410  Basecbs 17120  .rcmulr 17162   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  -gcsg 18814  .gcmg 18946  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119  Poly1cpl1 22059  coe1cco1 22060   Mat cmat 22292   matToPolyMat cmat2pmat 22589   cPolyMatToMat ccpmat2mat 22590   CharPlyMat cchpmat 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-cur 8200  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-splice 14656  df-reverse 14665  df-s2 14755  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-efmnd 18743  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-gim 19138  df-cntz 19196  df-oppg 19225  df-symg 19249  df-pmtr 19321  df-psgn 19370  df-evpm 19371  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-dsmm 21639  df-frlm 21654  df-assa 21760  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-mamu 22276  df-mat 22293  df-mdet 22470  df-madu 22519  df-cpmat 22591  df-mat2pmat 22592  df-cpmat2mat 22593  df-decpmat 22648  df-pm2mp 22678  df-chpmat 22712
This theorem is referenced by:  cayleyhamilton  22775
  Copyright terms: Public domain W3C validator