| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > djhljjN | Structured version Visualization version GIF version | ||
| Description: Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| djhlj.b | ⊢ 𝐵 = (Base‘𝐾) |
| djhlj.k | ⊢ ∨ = (join‘𝐾) |
| djhlj.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| djhlj.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| djhlj.j | ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) |
| djhljj.w | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| djhljj.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| djhljj.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| djhljjN | ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djhljj.w | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | djhljj.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | djhljj.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | djhlj.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | djhlj.k | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 6 | djhlj.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | djhlj.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 8 | djhlj.j | . . . . 5 ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) | |
| 9 | 4, 5, 6, 7, 8 | djhlj 41420 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 10 | 1, 2, 3, 9 | syl12anc 836 | . . 3 ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 11 | 4, 6, 7 | dihcl 41289 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ ran 𝐼) |
| 12 | 1, 2, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑋) ∈ ran 𝐼) |
| 13 | eqid 2735 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 14 | eqid 2735 | . . . . . . 7 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 15 | 6, 13, 7, 14 | dihrnss 41297 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ ran 𝐼) → (𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 16 | 1, 12, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 17 | 4, 6, 7 | dihcl 41289 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ ran 𝐼) |
| 18 | 1, 3, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑌) ∈ ran 𝐼) |
| 19 | 6, 13, 7, 14 | dihrnss 41297 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑌) ∈ ran 𝐼) → (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 20 | 1, 18, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 21 | 6, 7, 13, 14, 8 | djhcl 41419 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))) → ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) |
| 22 | 1, 16, 20, 21 | syl12anc 836 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) |
| 23 | 6, 7 | dihcnvid2 41292 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) → (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 24 | 1, 22, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 25 | 10, 24 | eqtr4d 2773 | . 2 ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
| 26 | 1 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 27 | 26 | hllatd 39382 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 28 | 4, 5 | latjcl 18449 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 29 | 27, 2, 3, 28 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 30 | 4, 6, 7 | dihcnvcl 41290 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) → (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) |
| 31 | 1, 22, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) |
| 32 | 4, 6, 7 | dih11 41284 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) → ((𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) ↔ (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
| 33 | 1, 29, 31, 32 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) ↔ (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
| 34 | 25, 33 | mpbid 232 | 1 ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ◡ccnv 5653 ran crn 5655 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 joincjn 18323 Latclat 18441 HLchlt 39368 LHypclh 40003 DVecHcdvh 41097 DIsoHcdih 41247 joinHcdjh 41413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-undef 8272 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-0g 17455 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lvec 21061 df-lsatoms 38994 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39517 df-lplanes 39518 df-lvols 39519 df-lines 39520 df-psubsp 39522 df-pmap 39523 df-padd 39815 df-lhyp 40007 df-laut 40008 df-ldil 40123 df-ltrn 40124 df-trl 40178 df-tendo 40774 df-edring 40776 df-disoa 41048 df-dvech 41098 df-dib 41158 df-dic 41192 df-dih 41248 df-doch 41367 df-djh 41414 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |