| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > djhljjN | Structured version Visualization version GIF version | ||
| Description: Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| djhlj.b | ⊢ 𝐵 = (Base‘𝐾) |
| djhlj.k | ⊢ ∨ = (join‘𝐾) |
| djhlj.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| djhlj.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| djhlj.j | ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) |
| djhljj.w | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| djhljj.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| djhljj.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| djhljjN | ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djhljj.w | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | djhljj.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | djhljj.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | djhlj.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | djhlj.k | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 6 | djhlj.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | djhlj.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 8 | djhlj.j | . . . . 5 ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) | |
| 9 | 4, 5, 6, 7, 8 | djhlj 41390 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 10 | 1, 2, 3, 9 | syl12anc 836 | . . 3 ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 11 | 4, 6, 7 | dihcl 41259 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ ran 𝐼) |
| 12 | 1, 2, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑋) ∈ ran 𝐼) |
| 13 | eqid 2729 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 14 | eqid 2729 | . . . . . . 7 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 15 | 6, 13, 7, 14 | dihrnss 41267 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ ran 𝐼) → (𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 16 | 1, 12, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 17 | 4, 6, 7 | dihcl 41259 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ ran 𝐼) |
| 18 | 1, 3, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑌) ∈ ran 𝐼) |
| 19 | 6, 13, 7, 14 | dihrnss 41267 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑌) ∈ ran 𝐼) → (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 20 | 1, 18, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 21 | 6, 7, 13, 14, 8 | djhcl 41389 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))) → ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) |
| 22 | 1, 16, 20, 21 | syl12anc 836 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) |
| 23 | 6, 7 | dihcnvid2 41262 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) → (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 24 | 1, 22, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 25 | 10, 24 | eqtr4d 2767 | . 2 ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
| 26 | 1 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 27 | 26 | hllatd 39352 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 28 | 4, 5 | latjcl 18382 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 29 | 27, 2, 3, 28 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 30 | 4, 6, 7 | dihcnvcl 41260 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) → (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) |
| 31 | 1, 22, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) |
| 32 | 4, 6, 7 | dih11 41254 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) → ((𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) ↔ (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
| 33 | 1, 29, 31, 32 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) ↔ (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
| 34 | 25, 33 | mpbid 232 | 1 ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ◡ccnv 5630 ran crn 5632 ‘cfv 6500 (class class class)co 7370 Basecbs 17157 joincjn 18254 Latclat 18374 HLchlt 39338 LHypclh 39973 DVecHcdvh 41067 DIsoHcdih 41217 joinHcdjh 41383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-riotaBAD 38941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-tpos 8183 df-undef 8230 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-map 8779 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-n0 12422 df-z 12509 df-uz 12773 df-fz 13448 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-0g 17382 df-proset 18237 df-poset 18256 df-plt 18271 df-lub 18287 df-glb 18288 df-join 18289 df-meet 18290 df-p0 18366 df-p1 18367 df-lat 18375 df-clat 18442 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-submnd 18695 df-grp 18852 df-minusg 18853 df-sbg 18854 df-subg 19039 df-cntz 19233 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-dvr 20323 df-drng 20653 df-lmod 20802 df-lss 20872 df-lsp 20912 df-lvec 21044 df-lsatoms 38964 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-llines 39487 df-lplanes 39488 df-lvols 39489 df-lines 39490 df-psubsp 39492 df-pmap 39493 df-padd 39785 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 df-tendo 40744 df-edring 40746 df-disoa 41018 df-dvech 41068 df-dib 41128 df-dic 41162 df-dih 41218 df-doch 41337 df-djh 41384 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |