| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > djhljjN | Structured version Visualization version GIF version | ||
| Description: Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| djhlj.b | ⊢ 𝐵 = (Base‘𝐾) |
| djhlj.k | ⊢ ∨ = (join‘𝐾) |
| djhlj.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| djhlj.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| djhlj.j | ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) |
| djhljj.w | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| djhljj.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| djhljj.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| djhljjN | ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djhljj.w | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | djhljj.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | djhljj.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | djhlj.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | djhlj.k | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 6 | djhlj.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | djhlj.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 8 | djhlj.j | . . . . 5 ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) | |
| 9 | 4, 5, 6, 7, 8 | djhlj 41419 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 10 | 1, 2, 3, 9 | syl12anc 836 | . . 3 ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 11 | 4, 6, 7 | dihcl 41288 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ ran 𝐼) |
| 12 | 1, 2, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑋) ∈ ran 𝐼) |
| 13 | eqid 2730 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 14 | eqid 2730 | . . . . . . 7 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 15 | 6, 13, 7, 14 | dihrnss 41296 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ ran 𝐼) → (𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 16 | 1, 12, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 17 | 4, 6, 7 | dihcl 41288 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ ran 𝐼) |
| 18 | 1, 3, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑌) ∈ ran 𝐼) |
| 19 | 6, 13, 7, 14 | dihrnss 41296 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑌) ∈ ran 𝐼) → (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 20 | 1, 18, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 21 | 6, 7, 13, 14, 8 | djhcl 41418 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))) → ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) |
| 22 | 1, 16, 20, 21 | syl12anc 836 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) |
| 23 | 6, 7 | dihcnvid2 41291 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) → (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 24 | 1, 22, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
| 25 | 10, 24 | eqtr4d 2768 | . 2 ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
| 26 | 1 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 27 | 26 | hllatd 39382 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 28 | 4, 5 | latjcl 18337 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 29 | 27, 2, 3, 28 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 30 | 4, 6, 7 | dihcnvcl 41289 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) → (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) |
| 31 | 1, 22, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) |
| 32 | 4, 6, 7 | dih11 41283 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) → ((𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) ↔ (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
| 33 | 1, 29, 31, 32 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) ↔ (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
| 34 | 25, 33 | mpbid 232 | 1 ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ◡ccnv 5613 ran crn 5615 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 joincjn 18209 Latclat 18329 HLchlt 39368 LHypclh 40002 DVecHcdvh 41096 DIsoHcdih 41246 joinHcdjh 41412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-undef 8198 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-0g 17337 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18330 df-clat 18397 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-cntz 19222 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-dvr 20312 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lvec 21030 df-lsatoms 38994 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39516 df-lplanes 39517 df-lvols 39518 df-lines 39519 df-psubsp 39521 df-pmap 39522 df-padd 39814 df-lhyp 40006 df-laut 40007 df-ldil 40122 df-ltrn 40123 df-trl 40177 df-tendo 40773 df-edring 40775 df-disoa 41047 df-dvech 41097 df-dib 41157 df-dic 41191 df-dih 41247 df-doch 41366 df-djh 41413 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |