![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > djhljjN | Structured version Visualization version GIF version |
Description: Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
djhlj.b | β’ π΅ = (BaseβπΎ) |
djhlj.k | β’ β¨ = (joinβπΎ) |
djhlj.h | β’ π» = (LHypβπΎ) |
djhlj.i | β’ πΌ = ((DIsoHβπΎ)βπ) |
djhlj.j | β’ π½ = ((joinHβπΎ)βπ) |
djhljj.w | β’ (π β (πΎ β HL β§ π β π»)) |
djhljj.x | β’ (π β π β π΅) |
djhljj.y | β’ (π β π β π΅) |
Ref | Expression |
---|---|
djhljjN | β’ (π β (π β¨ π) = (β‘πΌβ((πΌβπ)π½(πΌβπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djhljj.w | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
2 | djhljj.x | . . . 4 β’ (π β π β π΅) | |
3 | djhljj.y | . . . 4 β’ (π β π β π΅) | |
4 | djhlj.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
5 | djhlj.k | . . . . 5 β’ β¨ = (joinβπΎ) | |
6 | djhlj.h | . . . . 5 β’ π» = (LHypβπΎ) | |
7 | djhlj.i | . . . . 5 β’ πΌ = ((DIsoHβπΎ)βπ) | |
8 | djhlj.j | . . . . 5 β’ π½ = ((joinHβπΎ)βπ) | |
9 | 4, 5, 6, 7, 8 | djhlj 40575 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β π΅)) β (πΌβ(π β¨ π)) = ((πΌβπ)π½(πΌβπ))) |
10 | 1, 2, 3, 9 | syl12anc 833 | . . 3 β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ)π½(πΌβπ))) |
11 | 4, 6, 7 | dihcl 40444 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβπ) β ran πΌ) |
12 | 1, 2, 11 | syl2anc 582 | . . . . . 6 β’ (π β (πΌβπ) β ran πΌ) |
13 | eqid 2730 | . . . . . . 7 β’ ((DVecHβπΎ)βπ) = ((DVecHβπΎ)βπ) | |
14 | eqid 2730 | . . . . . . 7 β’ (Baseβ((DVecHβπΎ)βπ)) = (Baseβ((DVecHβπΎ)βπ)) | |
15 | 6, 13, 7, 14 | dihrnss 40452 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ (πΌβπ) β ran πΌ) β (πΌβπ) β (Baseβ((DVecHβπΎ)βπ))) |
16 | 1, 12, 15 | syl2anc 582 | . . . . 5 β’ (π β (πΌβπ) β (Baseβ((DVecHβπΎ)βπ))) |
17 | 4, 6, 7 | dihcl 40444 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβπ) β ran πΌ) |
18 | 1, 3, 17 | syl2anc 582 | . . . . . 6 β’ (π β (πΌβπ) β ran πΌ) |
19 | 6, 13, 7, 14 | dihrnss 40452 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ (πΌβπ) β ran πΌ) β (πΌβπ) β (Baseβ((DVecHβπΎ)βπ))) |
20 | 1, 18, 19 | syl2anc 582 | . . . . 5 β’ (π β (πΌβπ) β (Baseβ((DVecHβπΎ)βπ))) |
21 | 6, 7, 13, 14, 8 | djhcl 40574 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ ((πΌβπ) β (Baseβ((DVecHβπΎ)βπ)) β§ (πΌβπ) β (Baseβ((DVecHβπΎ)βπ)))) β ((πΌβπ)π½(πΌβπ)) β ran πΌ) |
22 | 1, 16, 20, 21 | syl12anc 833 | . . . 4 β’ (π β ((πΌβπ)π½(πΌβπ)) β ran πΌ) |
23 | 6, 7 | dihcnvid2 40447 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ ((πΌβπ)π½(πΌβπ)) β ran πΌ) β (πΌβ(β‘πΌβ((πΌβπ)π½(πΌβπ)))) = ((πΌβπ)π½(πΌβπ))) |
24 | 1, 22, 23 | syl2anc 582 | . . 3 β’ (π β (πΌβ(β‘πΌβ((πΌβπ)π½(πΌβπ)))) = ((πΌβπ)π½(πΌβπ))) |
25 | 10, 24 | eqtr4d 2773 | . 2 β’ (π β (πΌβ(π β¨ π)) = (πΌβ(β‘πΌβ((πΌβπ)π½(πΌβπ))))) |
26 | 1 | simpld 493 | . . . . 5 β’ (π β πΎ β HL) |
27 | 26 | hllatd 38537 | . . . 4 β’ (π β πΎ β Lat) |
28 | 4, 5 | latjcl 18396 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β¨ π) β π΅) |
29 | 27, 2, 3, 28 | syl3anc 1369 | . . 3 β’ (π β (π β¨ π) β π΅) |
30 | 4, 6, 7 | dihcnvcl 40445 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ ((πΌβπ)π½(πΌβπ)) β ran πΌ) β (β‘πΌβ((πΌβπ)π½(πΌβπ))) β π΅) |
31 | 1, 22, 30 | syl2anc 582 | . . 3 β’ (π β (β‘πΌβ((πΌβπ)π½(πΌβπ))) β π΅) |
32 | 4, 6, 7 | dih11 40439 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β¨ π) β π΅ β§ (β‘πΌβ((πΌβπ)π½(πΌβπ))) β π΅) β ((πΌβ(π β¨ π)) = (πΌβ(β‘πΌβ((πΌβπ)π½(πΌβπ)))) β (π β¨ π) = (β‘πΌβ((πΌβπ)π½(πΌβπ))))) |
33 | 1, 29, 31, 32 | syl3anc 1369 | . 2 β’ (π β ((πΌβ(π β¨ π)) = (πΌβ(β‘πΌβ((πΌβπ)π½(πΌβπ)))) β (π β¨ π) = (β‘πΌβ((πΌβπ)π½(πΌβπ))))) |
34 | 25, 33 | mpbid 231 | 1 β’ (π β (π β¨ π) = (β‘πΌβ((πΌβπ)π½(πΌβπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 β wss 3947 β‘ccnv 5674 ran crn 5676 βcfv 6542 (class class class)co 7411 Basecbs 17148 joincjn 18268 Latclat 18388 HLchlt 38523 LHypclh 39158 DVecHcdvh 40252 DIsoHcdih 40402 joinHcdjh 40568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-riotaBAD 38126 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-undef 8260 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-0g 17391 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-cntz 19222 df-lsm 19545 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20502 df-lmod 20616 df-lss 20687 df-lsp 20727 df-lvec 20858 df-lsatoms 38149 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 df-lvols 38674 df-lines 38675 df-psubsp 38677 df-pmap 38678 df-padd 38970 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 df-trl 39333 df-tendo 39929 df-edring 39931 df-disoa 40203 df-dvech 40253 df-dib 40313 df-dic 40347 df-dih 40403 df-doch 40522 df-djh 40569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |