| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashscontpowcl | Structured version Visualization version GIF version | ||
| Description: Closure of E for https://www3.nd.edu/%7eandyp/notes/AKS.pdf Theorem 6.1. (Contributed by metakunt, 28-Apr-2025.) |
| Ref | Expression |
|---|---|
| hashscontpowcl.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| hashscontpowcl.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| hashscontpowcl.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| hashscontpowcl.4 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| hashscontpowcl.5 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| hashscontpowcl.6 | ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| hashscontpowcl.7 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| hashscontpowcl.8 | ⊢ 𝑌 = (ℤ/nℤ‘𝑅) |
| Ref | Expression |
|---|---|
| hashscontpowcl | ⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashscontpowcl.4 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 2 | hashscontpowcl.8 | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 4 | 2, 3 | znfi 21501 | . . . 4 ⊢ (𝑅 ∈ ℕ → (Base‘𝑌) ∈ Fin) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (Base‘𝑌) ∈ Fin) |
| 6 | 1 | nnnn0d 12479 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℕ0) |
| 7 | 2 | zncrng 21486 | . . . . . 6 ⊢ (𝑅 ∈ ℕ0 → 𝑌 ∈ CRing) |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ CRing) |
| 9 | crngring 20165 | . . . . 5 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Ring) |
| 11 | hashscontpowcl.7 | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 12 | 11 | zrhrhm 21453 | . . . 4 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
| 13 | zringbas 21395 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 14 | 13, 3 | rhmf 20405 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
| 15 | fimass 6690 | . . . 4 ⊢ (𝐿:ℤ⟶(Base‘𝑌) → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Base‘𝑌)) | |
| 16 | 10, 12, 14, 15 | 4syl 19 | . . 3 ⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Base‘𝑌)) |
| 17 | 5, 16 | ssfid 9188 | . 2 ⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin) |
| 18 | hashcl 14297 | . 2 ⊢ ((𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0) | |
| 19 | 17, 18 | syl 17 | 1 ⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 × cxp 5629 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 Fincfn 8895 1c1 11045 · cmul 11049 / cdiv 11811 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 ↑cexp 14002 ♯chash 14271 ∥ cdvds 16198 gcd cgcd 16440 ℙcprime 16617 Basecbs 17155 Ringcrg 20153 CRingccrg 20154 RingHom crh 20389 ℤringczring 21388 ℤRHomczrh 21441 ℤ/nℤczn 21444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-hash 14272 df-dvds 16199 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-imas 17447 df-qus 17448 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-nsg 19038 df-eqg 19039 df-ghm 19127 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-lmod 20800 df-lss 20870 df-lsp 20910 df-sra 21112 df-rgmod 21113 df-lidl 21150 df-rsp 21151 df-2idl 21192 df-cnfld 21297 df-zring 21389 df-zrh 21445 df-zn 21448 |
| This theorem is referenced by: aks6d1c3 42104 aks6d1c2lem4 42108 aks6d1c2 42111 aks6d1c6lem3 42153 aks6d1c7lem1 42161 aks6d1c7lem2 42162 |
| Copyright terms: Public domain | W3C validator |