| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashscontpowcl | Structured version Visualization version GIF version | ||
| Description: Closure of E for https://www3.nd.edu/%7eandyp/notes/AKS.pdf Theorem 6.1. (Contributed by metakunt, 28-Apr-2025.) |
| Ref | Expression |
|---|---|
| hashscontpowcl.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| hashscontpowcl.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| hashscontpowcl.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| hashscontpowcl.4 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| hashscontpowcl.5 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| hashscontpowcl.6 | ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| hashscontpowcl.7 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| hashscontpowcl.8 | ⊢ 𝑌 = (ℤ/nℤ‘𝑅) |
| Ref | Expression |
|---|---|
| hashscontpowcl | ⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashscontpowcl.4 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 2 | hashscontpowcl.8 | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘𝑅) | |
| 3 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 4 | 2, 3 | znfi 21520 | . . . 4 ⊢ (𝑅 ∈ ℕ → (Base‘𝑌) ∈ Fin) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (Base‘𝑌) ∈ Fin) |
| 6 | 1 | nnnn0d 12562 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℕ0) |
| 7 | 2 | zncrng 21505 | . . . . . 6 ⊢ (𝑅 ∈ ℕ0 → 𝑌 ∈ CRing) |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ CRing) |
| 9 | crngring 20205 | . . . . 5 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ Ring) |
| 11 | hashscontpowcl.7 | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 12 | 11 | zrhrhm 21472 | . . . 4 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
| 13 | zringbas 21414 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 14 | 13, 3 | rhmf 20445 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
| 15 | fimass 6726 | . . . 4 ⊢ (𝐿:ℤ⟶(Base‘𝑌) → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Base‘𝑌)) | |
| 16 | 10, 12, 14, 15 | 4syl 19 | . . 3 ⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Base‘𝑌)) |
| 17 | 5, 16 | ssfid 9273 | . 2 ⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin) |
| 18 | hashcl 14374 | . 2 ⊢ ((𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0) | |
| 19 | 17, 18 | syl 17 | 1 ⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 × cxp 5652 “ cima 5657 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 Fincfn 8959 1c1 11130 · cmul 11134 / cdiv 11894 ℕcn 12240 ℕ0cn0 12501 ℤcz 12588 ↑cexp 14079 ♯chash 14348 ∥ cdvds 16272 gcd cgcd 16513 ℙcprime 16690 Basecbs 17228 Ringcrg 20193 CRingccrg 20194 RingHom crh 20429 ℤringczring 21407 ℤRHomczrh 21460 ℤ/nℤczn 21463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-ec 8721 df-qs 8725 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-hash 14349 df-dvds 16273 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-0g 17455 df-imas 17522 df-qus 17523 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-nsg 19107 df-eqg 19108 df-ghm 19196 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-2idl 21211 df-cnfld 21316 df-zring 21408 df-zrh 21464 df-zn 21467 |
| This theorem is referenced by: aks6d1c3 42136 aks6d1c2lem4 42140 aks6d1c2 42143 aks6d1c6lem3 42185 aks6d1c7lem1 42193 aks6d1c7lem2 42194 |
| Copyright terms: Public domain | W3C validator |