![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashscontpowcl | Structured version Visualization version GIF version |
Description: Closure of E for https://www3.nd.edu/%7eandyp/notes/AKS.pdf Theorem 6.1. (Contributed by metakunt, 28-Apr-2025.) |
Ref | Expression |
---|---|
hashscontpowcl.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
hashscontpowcl.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
hashscontpowcl.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
hashscontpowcl.4 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
hashscontpowcl.5 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
hashscontpowcl.6 | ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
hashscontpowcl.7 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
hashscontpowcl.8 | ⊢ 𝑌 = (ℤ/nℤ‘𝑅) |
Ref | Expression |
---|---|
hashscontpowcl | ⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashscontpowcl.4 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
2 | hashscontpowcl.8 | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘𝑅) | |
3 | eqid 2728 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
4 | 2, 3 | znfi 21500 | . . . 4 ⊢ (𝑅 ∈ ℕ → (Base‘𝑌) ∈ Fin) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (Base‘𝑌) ∈ Fin) |
6 | 1 | nnnn0d 12570 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ ℕ0) |
7 | 2 | zncrng 21485 | . . . . . . . 8 ⊢ (𝑅 ∈ ℕ0 → 𝑌 ∈ CRing) |
8 | 6, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ CRing) |
9 | crngring 20192 | . . . . . . 7 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ Ring) |
11 | hashscontpowcl.7 | . . . . . . 7 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
12 | 11 | zrhrhm 21444 | . . . . . 6 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑌)) |
14 | zringbas 21386 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
15 | 14, 3 | rhmf 20431 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
17 | fimass 6748 | . . . 4 ⊢ (𝐿:ℤ⟶(Base‘𝑌) → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Base‘𝑌)) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (Base‘𝑌)) |
19 | 5, 18 | ssfid 9298 | . 2 ⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin) |
20 | hashcl 14355 | . 2 ⊢ ((𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0) | |
21 | 19, 20 | syl 17 | 1 ⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3949 class class class wbr 5152 × cxp 5680 “ cima 5685 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 Fincfn 8970 1c1 11147 · cmul 11151 / cdiv 11909 ℕcn 12250 ℕ0cn0 12510 ℤcz 12596 ↑cexp 14066 ♯chash 14329 ∥ cdvds 16238 gcd cgcd 16476 ℙcprime 16649 Basecbs 17187 Ringcrg 20180 CRingccrg 20181 RingHom crh 20415 ℤringczring 21379 ℤRHomczrh 21432 ℤ/nℤczn 21435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 ax-mulf 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-tpos 8238 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-ec 8733 df-qs 8737 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-fl 13797 df-mod 13875 df-seq 14007 df-hash 14330 df-dvds 16239 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-0g 17430 df-imas 17497 df-qus 17498 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-subg 19085 df-nsg 19086 df-eqg 19087 df-ghm 19175 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-cring 20183 df-oppr 20280 df-dvdsr 20303 df-rhm 20418 df-subrng 20490 df-subrg 20515 df-lmod 20752 df-lss 20823 df-lsp 20863 df-sra 21065 df-rgmod 21066 df-lidl 21111 df-rsp 21112 df-2idl 21151 df-cnfld 21287 df-zring 21380 df-zrh 21436 df-zn 21439 |
This theorem is referenced by: aks6d1c3 41626 aks6d1c2lem4 41630 aks6d1c2 41633 aks6d1c6lem3 41676 aks6d1c7lem1 41684 aks6d1c7lem2 41685 |
Copyright terms: Public domain | W3C validator |