Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapclN Structured version   Visualization version   GIF version

Theorem hvmapclN 39005
 Description: Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmap1o.h 𝐻 = (LHyp‘𝐾)
hvmap1o.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmap1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmap1o.v 𝑉 = (Base‘𝑈)
hvmap1o.z 0 = (0g𝑈)
hvmap1o.f 𝐹 = (LFnl‘𝑈)
hvmap1o.l 𝐿 = (LKer‘𝑈)
hvmap1o.d 𝐷 = (LDual‘𝑈)
hvmap1o.q 𝑄 = (0g𝐷)
hvmap1o.c 𝐶 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}
hvmap1o.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmap1o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hvmapcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
hvmapclN (𝜑 → (𝑀𝑋) ∈ (𝐶 ∖ {𝑄}))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐿   𝑓,𝑂   𝑈,𝑓   𝑓,𝑉
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑄(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑀(𝑓)   𝑊(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem hvmapclN
StepHypRef Expression
1 hvmap1o.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hvmap1o.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
3 hvmap1o.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 hvmap1o.v . . . 4 𝑉 = (Base‘𝑈)
5 hvmap1o.z . . . 4 0 = (0g𝑈)
6 hvmap1o.f . . . 4 𝐹 = (LFnl‘𝑈)
7 hvmap1o.l . . . 4 𝐿 = (LKer‘𝑈)
8 hvmap1o.d . . . 4 𝐷 = (LDual‘𝑈)
9 hvmap1o.q . . . 4 𝑄 = (0g𝐷)
10 hvmap1o.c . . . 4 𝐶 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}
11 hvmap1o.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
12 hvmap1o.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hvmap1o 39004 . . 3 (𝜑𝑀:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
14 f1of 6606 . . 3 (𝑀:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}) → 𝑀:(𝑉 ∖ { 0 })⟶(𝐶 ∖ {𝑄}))
1513, 14syl 17 . 2 (𝜑𝑀:(𝑉 ∖ { 0 })⟶(𝐶 ∖ {𝑄}))
16 hvmapcl.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1715, 16ffvelrnd 6843 1 (𝜑 → (𝑀𝑋) ∈ (𝐶 ∖ {𝑄}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  {crab 3137   ∖ cdif 3916  {csn 4550  ⟶wf 6339  –1-1-onto→wf1o 6342  ‘cfv 6343  Basecbs 16483  0gc0g 16713  LFnlclfn 36298  LKerclk 36326  LDualcld 36364  HLchlt 36591  LHypclh 37225  DVecHcdvh 38319  ocHcoch 38588  HVMapchvm 38997 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-riotaBAD 36194 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-tpos 7888  df-undef 7935  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-0g 16715  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19504  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lvec 19875  df-lsatoms 36217  df-lshyp 36218  df-lfl 36299  df-lkr 36327  df-ldual 36365  df-oposet 36417  df-ol 36419  df-oml 36420  df-covers 36507  df-ats 36508  df-atl 36539  df-cvlat 36563  df-hlat 36592  df-llines 36739  df-lplanes 36740  df-lvols 36741  df-lines 36742  df-psubsp 36744  df-pmap 36745  df-padd 37037  df-lhyp 37229  df-laut 37230  df-ldil 37345  df-ltrn 37346  df-trl 37400  df-tgrp 37984  df-tendo 37996  df-edring 37998  df-dveca 38244  df-disoa 38270  df-dvech 38320  df-dib 38380  df-dic 38414  df-dih 38470  df-doch 38589  df-djh 38636  df-hvmap 38998 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator