Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapclN Structured version   Visualization version   GIF version

Theorem hvmapclN 40951
Description: Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmap1o.h 𝐻 = (LHyp‘𝐾)
hvmap1o.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmap1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmap1o.v 𝑉 = (Base‘𝑈)
hvmap1o.z 0 = (0g𝑈)
hvmap1o.f 𝐹 = (LFnl‘𝑈)
hvmap1o.l 𝐿 = (LKer‘𝑈)
hvmap1o.d 𝐷 = (LDual‘𝑈)
hvmap1o.q 𝑄 = (0g𝐷)
hvmap1o.c 𝐶 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}
hvmap1o.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmap1o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hvmapcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
hvmapclN (𝜑 → (𝑀𝑋) ∈ (𝐶 ∖ {𝑄}))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐿   𝑓,𝑂   𝑈,𝑓   𝑓,𝑉
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑄(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑀(𝑓)   𝑊(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem hvmapclN
StepHypRef Expression
1 hvmap1o.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hvmap1o.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
3 hvmap1o.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 hvmap1o.v . . . 4 𝑉 = (Base‘𝑈)
5 hvmap1o.z . . . 4 0 = (0g𝑈)
6 hvmap1o.f . . . 4 𝐹 = (LFnl‘𝑈)
7 hvmap1o.l . . . 4 𝐿 = (LKer‘𝑈)
8 hvmap1o.d . . . 4 𝐷 = (LDual‘𝑈)
9 hvmap1o.q . . . 4 𝑄 = (0g𝐷)
10 hvmap1o.c . . . 4 𝐶 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}
11 hvmap1o.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
12 hvmap1o.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hvmap1o 40950 . . 3 (𝜑𝑀:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
14 f1of 6833 . . 3 (𝑀:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}) → 𝑀:(𝑉 ∖ { 0 })⟶(𝐶 ∖ {𝑄}))
1513, 14syl 17 . 2 (𝜑𝑀:(𝑉 ∖ { 0 })⟶(𝐶 ∖ {𝑄}))
16 hvmapcl.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1715, 16ffvelcdmd 7087 1 (𝜑 → (𝑀𝑋) ∈ (𝐶 ∖ {𝑄}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  {crab 3431  cdif 3945  {csn 4628  wf 6539  1-1-ontowf1o 6542  cfv 6543  Basecbs 17151  0gc0g 17392  LFnlclfn 38243  LKerclk 38271  LDualcld 38309  HLchlt 38536  LHypclh 39171  DVecHcdvh 40265  ocHcoch 40534  HVMapchvm 40943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-riotaBAD 38139
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-undef 8264  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-0g 17394  df-proset 18255  df-poset 18273  df-plt 18290  df-lub 18306  df-glb 18307  df-join 18308  df-meet 18309  df-p0 18385  df-p1 18386  df-lat 18392  df-clat 18459  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-subg 19043  df-cntz 19226  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-invr 20283  df-dvr 20296  df-drng 20506  df-lmod 20620  df-lss 20691  df-lsp 20731  df-lvec 20862  df-lsatoms 38162  df-lshyp 38163  df-lfl 38244  df-lkr 38272  df-ldual 38310  df-oposet 38362  df-ol 38364  df-oml 38365  df-covers 38452  df-ats 38453  df-atl 38484  df-cvlat 38508  df-hlat 38537  df-llines 38685  df-lplanes 38686  df-lvols 38687  df-lines 38688  df-psubsp 38690  df-pmap 38691  df-padd 38983  df-lhyp 39175  df-laut 39176  df-ldil 39291  df-ltrn 39292  df-trl 39346  df-tgrp 39930  df-tendo 39942  df-edring 39944  df-dveca 40190  df-disoa 40216  df-dvech 40266  df-dib 40326  df-dic 40360  df-dih 40416  df-doch 40535  df-djh 40582  df-hvmap 40944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator