![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem27 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41542. Special case of lcfrlem37 41536 when ((𝐽‘𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem25.jz | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) = 𝑄) |
lcfrlem25.in | ⊢ (𝜑 → 𝐼 ≠ 0 ) |
lcfrlem27.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) |
lcfrlem27.gs | ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
lcfrlem27.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem27.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem27.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
Ref | Expression |
---|---|
lcfrlem27 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem17.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcfrlem17.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfrlem17.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
6 | lcfrlem24.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
7 | lcfrlem24.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
8 | lcfrlem24.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑆) | |
9 | lcfrlem17.z | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
10 | eqid 2740 | . . . . 5 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
11 | lcfrlem24.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
12 | lcfrlem25.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑈) | |
13 | eqid 2740 | . . . . 5 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
14 | eqid 2740 | . . . . 5 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
15 | lcfrlem24.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
16 | lcfrlem17.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | eqid 2740 | . . . . 5 ⊢ (LSubSp‘𝐷) = (LSubSp‘𝐷) | |
18 | lcfrlem27.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) | |
19 | lcfrlem27.gs | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) | |
20 | lcfrlem27.e | . . . . 5 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
21 | lcfrlem27.ye | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
22 | lcfrlem17.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
23 | eldifsni 4815 | . . . . . . 7 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
25 | eldifsn 4811 | . . . . . 6 ⊢ (𝑌 ∈ (𝐸 ∖ { 0 }) ↔ (𝑌 ∈ 𝐸 ∧ 𝑌 ≠ 0 )) | |
26 | 21, 24, 25 | sylanbrc 582 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝐸 ∖ { 0 })) |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26 | lcfrlem16 41515 | . . . 4 ⊢ (𝜑 → (𝐽‘𝑌) ∈ 𝐺) |
28 | lcfrlem17.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
29 | lcfrlem17.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
30 | lcfrlem17.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
31 | lcfrlem17.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
32 | lcfrlem22.b | . . . . 5 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
33 | lcfrlem24.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑆) | |
34 | lcfrlem24.ib | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
35 | lcfrlem25.jz | . . . . 5 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) = 𝑄) | |
36 | lcfrlem25.in | . . . . 5 ⊢ (𝜑 → 𝐼 ≠ 0 ) | |
37 | 1, 2, 3, 4, 5, 9, 28, 29, 16, 30, 22, 31, 32, 6, 7, 33, 8, 15, 34, 11, 12, 35, 36 | lcfrlem26 41525 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑌)))) |
38 | 2fveq3 6925 | . . . . . 6 ⊢ (𝑔 = (𝐽‘𝑌) → ( ⊥ ‘(𝐿‘𝑔)) = ( ⊥ ‘(𝐿‘(𝐽‘𝑌)))) | |
39 | 38 | eleq2d 2830 | . . . . 5 ⊢ (𝑔 = (𝐽‘𝑌) → ((𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑌))))) |
40 | 39 | rspcev 3635 | . . . 4 ⊢ (((𝐽‘𝑌) ∈ 𝐺 ∧ (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑌)))) → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
41 | 27, 37, 40 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
42 | eliun 5019 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
43 | 41, 42 | sylibr 234 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
44 | 43, 20 | eleqtrrdi 2855 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 {csn 4648 {cpr 4650 ∪ ciun 5015 ↦ cmpt 5249 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 LSubSpclss 20952 LSpanclspn 20992 LSAtomsclsa 38930 LFnlclfn 39013 LKerclk 39041 LDualcld 39079 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 ocHcoch 41304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lshyp 38933 df-lcv 38975 df-lfl 39014 df-lkr 39042 df-ldual 39080 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 |
This theorem is referenced by: lcfrlem38 41537 |
Copyright terms: Public domain | W3C validator |