Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem27 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39366. Special case of lcfrlem37 39360 when ((𝐽‘𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem25.jz | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) = 𝑄) |
lcfrlem25.in | ⊢ (𝜑 → 𝐼 ≠ 0 ) |
lcfrlem27.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) |
lcfrlem27.gs | ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
lcfrlem27.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem27.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem27.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
Ref | Expression |
---|---|
lcfrlem27 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem17.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcfrlem17.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfrlem17.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
6 | lcfrlem24.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
7 | lcfrlem24.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
8 | lcfrlem24.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑆) | |
9 | lcfrlem17.z | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
10 | eqid 2738 | . . . . 5 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
11 | lcfrlem24.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
12 | lcfrlem25.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑈) | |
13 | eqid 2738 | . . . . 5 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
14 | eqid 2738 | . . . . 5 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
15 | lcfrlem24.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
16 | lcfrlem17.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | eqid 2738 | . . . . 5 ⊢ (LSubSp‘𝐷) = (LSubSp‘𝐷) | |
18 | lcfrlem27.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) | |
19 | lcfrlem27.gs | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) | |
20 | lcfrlem27.e | . . . . 5 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
21 | lcfrlem27.ye | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
22 | lcfrlem17.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
23 | eldifsni 4718 | . . . . . . 7 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
25 | eldifsn 4715 | . . . . . 6 ⊢ (𝑌 ∈ (𝐸 ∖ { 0 }) ↔ (𝑌 ∈ 𝐸 ∧ 𝑌 ≠ 0 )) | |
26 | 21, 24, 25 | sylanbrc 586 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝐸 ∖ { 0 })) |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26 | lcfrlem16 39339 | . . . 4 ⊢ (𝜑 → (𝐽‘𝑌) ∈ 𝐺) |
28 | lcfrlem17.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
29 | lcfrlem17.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
30 | lcfrlem17.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
31 | lcfrlem17.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
32 | lcfrlem22.b | . . . . 5 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
33 | lcfrlem24.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑆) | |
34 | lcfrlem24.ib | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
35 | lcfrlem25.jz | . . . . 5 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) = 𝑄) | |
36 | lcfrlem25.in | . . . . 5 ⊢ (𝜑 → 𝐼 ≠ 0 ) | |
37 | 1, 2, 3, 4, 5, 9, 28, 29, 16, 30, 22, 31, 32, 6, 7, 33, 8, 15, 34, 11, 12, 35, 36 | lcfrlem26 39349 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑌)))) |
38 | 2fveq3 6741 | . . . . . 6 ⊢ (𝑔 = (𝐽‘𝑌) → ( ⊥ ‘(𝐿‘𝑔)) = ( ⊥ ‘(𝐿‘(𝐽‘𝑌)))) | |
39 | 38 | eleq2d 2824 | . . . . 5 ⊢ (𝑔 = (𝐽‘𝑌) → ((𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑌))))) |
40 | 39 | rspcev 3550 | . . . 4 ⊢ (((𝐽‘𝑌) ∈ 𝐺 ∧ (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑌)))) → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
41 | 27, 37, 40 | syl2anc 587 | . . 3 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
42 | eliun 4923 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
43 | 41, 42 | sylibr 237 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
44 | 43, 20 | eleqtrrdi 2850 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∃wrex 3063 {crab 3066 ∖ cdif 3878 ∩ cin 3880 ⊆ wss 3881 {csn 4556 {cpr 4558 ∪ ciun 4919 ↦ cmpt 5150 ‘cfv 6398 ℩crio 7188 (class class class)co 7232 Basecbs 16788 +gcplusg 16830 Scalarcsca 16833 ·𝑠 cvsca 16834 0gc0g 16972 LSubSpclss 19996 LSpanclspn 20036 LSAtomsclsa 36755 LFnlclfn 36838 LKerclk 36866 LDualcld 36904 HLchlt 37131 LHypclh 37765 DVecHcdvh 38859 ocHcoch 39128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-riotaBAD 36734 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-tpos 7989 df-undef 8036 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-map 8531 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-n0 12116 df-z 12202 df-uz 12464 df-fz 13121 df-struct 16728 df-sets 16745 df-slot 16763 df-ndx 16773 df-base 16789 df-ress 16813 df-plusg 16843 df-mulr 16844 df-sca 16846 df-vsca 16847 df-0g 16974 df-mre 17117 df-mrc 17118 df-acs 17120 df-proset 17830 df-poset 17848 df-plt 17864 df-lub 17880 df-glb 17881 df-join 17882 df-meet 17883 df-p0 17959 df-p1 17960 df-lat 17966 df-clat 18033 df-mgm 18142 df-sgrp 18191 df-mnd 18202 df-submnd 18247 df-grp 18396 df-minusg 18397 df-sbg 18398 df-subg 18568 df-cntz 18739 df-oppg 18766 df-lsm 19053 df-cmn 19200 df-abl 19201 df-mgp 19533 df-ur 19545 df-ring 19592 df-oppr 19669 df-dvdsr 19687 df-unit 19688 df-invr 19718 df-dvr 19729 df-drng 19797 df-lmod 19929 df-lss 19997 df-lsp 20037 df-lvec 20168 df-lsatoms 36757 df-lshyp 36758 df-lcv 36800 df-lfl 36839 df-lkr 36867 df-ldual 36905 df-oposet 36957 df-ol 36959 df-oml 36960 df-covers 37047 df-ats 37048 df-atl 37079 df-cvlat 37103 df-hlat 37132 df-llines 37279 df-lplanes 37280 df-lvols 37281 df-lines 37282 df-psubsp 37284 df-pmap 37285 df-padd 37577 df-lhyp 37769 df-laut 37770 df-ldil 37885 df-ltrn 37886 df-trl 37940 df-tgrp 38524 df-tendo 38536 df-edring 38538 df-dveca 38784 df-disoa 38810 df-dvech 38860 df-dib 38920 df-dic 38954 df-dih 39010 df-doch 39129 df-djh 39176 |
This theorem is referenced by: lcfrlem38 39361 |
Copyright terms: Public domain | W3C validator |