![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smadiadetlem3lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for smadiadetlem3 22619. (Contributed by AV, 12-Jan-2019.) |
Ref | Expression |
---|---|
marep01ma.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marep01ma.b | ⊢ 𝐵 = (Base‘𝐴) |
marep01ma.r | ⊢ 𝑅 ∈ CRing |
marep01ma.0 | ⊢ 0 = (0g‘𝑅) |
marep01ma.1 | ⊢ 1 = (1r‘𝑅) |
smadiadetlem.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
smadiadetlem.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
madetminlem.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
madetminlem.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
madetminlem.t | ⊢ · = (.r‘𝑅) |
smadiadetlem.w | ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
smadiadetlem.z | ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) |
Ref | Expression |
---|---|
smadiadetlem3lem1 | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))):𝑊⟶(Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marep01ma.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | marep01ma.r | . . 3 ⊢ 𝑅 ∈ CRing | |
4 | marep01ma.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | marep01ma.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
6 | smadiadetlem.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
7 | smadiadetlem.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
8 | madetminlem.y | . . 3 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
9 | madetminlem.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
10 | madetminlem.t | . . 3 ⊢ · = (.r‘𝑅) | |
11 | smadiadetlem.w | . . 3 ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
12 | smadiadetlem.z | . . 3 ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | smadiadetlem3lem0 22616 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ 𝑊) → (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))) ∈ (Base‘𝑅)) |
14 | 13 | fmpttd 7124 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))):𝑊⟶(Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 {csn 4630 ↦ cmpt 5232 ∘ ccom 5682 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 Basecbs 17188 .rcmulr 17242 0gc0g 17429 Σg cgsu 17430 SymGrpcsymg 19338 pmSgncpsgn 19461 mulGrpcmgp 20091 1rcur 20138 CRingccrg 20191 ℤRHomczrh 21447 Mat cmat 22356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-addf 11224 ax-mulf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9393 df-sup 9472 df-oi 9540 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-xnn0 12583 df-z 12597 df-dec 12716 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-seq 14008 df-exp 14068 df-hash 14331 df-word 14506 df-lsw 14554 df-concat 14562 df-s1 14587 df-substr 14632 df-pfx 14662 df-splice 14741 df-reverse 14750 df-s2 14840 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-ress 17218 df-plusg 17254 df-mulr 17255 df-starv 17256 df-sca 17257 df-vsca 17258 df-ip 17259 df-tset 17260 df-ple 17261 df-ds 17263 df-unif 17264 df-hom 17265 df-cco 17266 df-0g 17431 df-gsum 17432 df-prds 17437 df-pws 17439 df-mre 17574 df-mrc 17575 df-acs 17577 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-mhm 18748 df-submnd 18749 df-efmnd 18834 df-grp 18906 df-minusg 18907 df-mulg 19037 df-subg 19091 df-ghm 19181 df-gim 19227 df-cntz 19285 df-oppg 19314 df-symg 19339 df-pmtr 19414 df-psgn 19463 df-cmn 19754 df-abl 19755 df-mgp 20092 df-rng 20110 df-ur 20139 df-ring 20192 df-cring 20193 df-rhm 20428 df-subrng 20500 df-subrg 20525 df-sra 21075 df-rgmod 21076 df-cnfld 21302 df-zring 21395 df-zrh 21451 df-dsmm 21688 df-frlm 21703 df-mat 22357 |
This theorem is referenced by: smadiadetlem3 22619 |
Copyright terms: Public domain | W3C validator |