| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeg | Structured version Visualization version GIF version | ||
| Description: The degree of an algebraic field extension (noted [𝐿:𝐾]) is the degree of the minimal polynomial 𝑀(𝐴), whereas 𝐿 is the field generated by 𝐾 and the algebraic element 𝐴. Part of Proposition 1.4 of [Lang], p. 225. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| Ref | Expression |
|---|---|
| algextdeg | ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeg.k | . . 3 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 2 | algextdeg.l | . . 3 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 3 | algextdeg.d | . . 3 ⊢ 𝐷 = (deg1‘𝐸) | |
| 4 | algextdeg.m | . . 3 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 5 | algextdeg.f | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 6 | algextdeg.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 7 | algextdeg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 8 | eqid 2731 | . . 3 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
| 9 | eqid 2731 | . . 3 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
| 10 | eqid 2731 | . . 3 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
| 11 | fveq2 6822 | . . . . 5 ⊢ (𝑞 = 𝑝 → ((𝐸 evalSub1 𝐹)‘𝑞) = ((𝐸 evalSub1 𝐹)‘𝑝)) | |
| 12 | 11 | fveq1d 6824 | . . . 4 ⊢ (𝑞 = 𝑝 → (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴)) |
| 13 | 12 | cbvmptv 5195 | . . 3 ⊢ (𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) = (𝑝 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴)) |
| 14 | eceq1 8661 | . . . 4 ⊢ (𝑦 = 𝑥 → [𝑦]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})) = [𝑥]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) | |
| 15 | 14 | cbvmptv 5195 | . . 3 ⊢ (𝑦 ∈ (Base‘(Poly1‘𝐾)) ↦ [𝑦]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) = (𝑥 ∈ (Base‘(Poly1‘𝐾)) ↦ [𝑥]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) |
| 16 | eqid 2731 | . . 3 ⊢ (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}) = (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}) | |
| 17 | eqid 2731 | . . 3 ⊢ ((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) = ((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) | |
| 18 | imaeq2 6005 | . . . . 5 ⊢ (𝑟 = 𝑝 → ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟) = ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) | |
| 19 | 18 | unieqd 4872 | . . . 4 ⊢ (𝑟 = 𝑝 → ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟) = ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) |
| 20 | 19 | cbvmptv 5195 | . . 3 ⊢ (𝑟 ∈ (Base‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) ↦ ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟)) = (𝑝 ∈ (Base‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) ↦ ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) |
| 21 | eqid 2731 | . . 3 ⊢ (rem1p‘𝐾) = (rem1p‘𝐾) | |
| 22 | oveq1 7353 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑞(rem1p‘𝐾)(𝑀‘𝐴)) = (𝑝(rem1p‘𝐾)(𝑀‘𝐴))) | |
| 23 | 22 | cbvmptv 5195 | . . 3 ⊢ (𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) = (𝑝 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑝(rem1p‘𝐾)(𝑀‘𝐴))) |
| 24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23 | algextdeglem6 33733 | . 2 ⊢ (𝜑 → (dim‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) = (dim‘((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) “s (Poly1‘𝐾)))) |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20 | algextdeglem4 33731 | . 2 ⊢ (𝜑 → (dim‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) = (𝐿[:]𝐾)) |
| 26 | eqid 2731 | . . 3 ⊢ (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) | |
| 27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23, 26 | algextdeglem8 33735 | . 2 ⊢ (𝜑 → (dim‘((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) “s (Poly1‘𝐾))) = (𝐷‘(𝑀‘𝐴))) |
| 28 | 24, 25, 27 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 {csn 4576 ∪ cuni 4859 ↦ cmpt 5172 ◡ccnv 5615 “ cima 5619 ‘cfv 6481 (class class class)co 7346 [cec 8620 -∞cmnf 11144 [,)cico 13247 Basecbs 17120 ↾s cress 17141 0gc0g 17343 “s cimas 17408 /s cqus 17409 ~QG cqg 19035 Fieldcfield 20646 SubDRingcsdrg 20702 Poly1cpl1 22090 evalSub1 ces1 22229 deg1cdg1 25987 rem1pcr1p 26062 fldGen cfldgen 33274 dimcldim 33609 [:]cextdg 33651 IntgRing cirng 33694 minPoly cminply 33710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10354 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-rpss 7656 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-inf 9327 df-oi 9396 df-r1 9657 df-rank 9658 df-dju 9794 df-card 9832 df-acn 9835 df-ac 10007 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-ico 13251 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ocomp 17182 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-imas 17412 df-qus 17413 df-mre 17488 df-mrc 17489 df-mri 17490 df-acs 17491 df-proset 18200 df-drs 18201 df-poset 18219 df-ipo 18434 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19126 df-gim 19172 df-cntz 19230 df-oppg 19259 df-lsm 19549 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-srg 20106 df-ring 20154 df-cring 20155 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-irred 20278 df-invr 20307 df-dvr 20320 df-rhm 20391 df-nzr 20429 df-subrng 20462 df-subrg 20486 df-rlreg 20610 df-domn 20611 df-idom 20612 df-drng 20647 df-field 20648 df-sdrg 20703 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lmhm 20957 df-lmim 20958 df-lmic 20959 df-lbs 21010 df-lvec 21038 df-sra 21108 df-rgmod 21109 df-lidl 21146 df-rsp 21147 df-2idl 21188 df-lpidl 21260 df-lpir 21261 df-pid 21275 df-cnfld 21293 df-dsmm 21670 df-frlm 21685 df-uvc 21721 df-lindf 21744 df-linds 21745 df-assa 21791 df-asp 21792 df-ascl 21793 df-psr 21847 df-mvr 21848 df-mpl 21849 df-opsr 21851 df-evls 22010 df-evl 22011 df-psr1 22093 df-vr1 22094 df-ply1 22095 df-coe1 22096 df-evls1 22231 df-evl1 22232 df-mdeg 25988 df-deg1 25989 df-mon1 26064 df-uc1p 26065 df-q1p 26066 df-r1p 26067 df-ig1p 26068 df-fldgen 33275 df-mxidl 33423 df-dim 33610 df-fldext 33652 df-extdg 33653 df-irng 33695 df-minply 33711 |
| This theorem is referenced by: rtelextdg2lem 33737 constrcon 33785 |
| Copyright terms: Public domain | W3C validator |