| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeg | Structured version Visualization version GIF version | ||
| Description: The degree of an algebraic field extension (noted [𝐿:𝐾]) is the degree of the minimal polynomial 𝑀(𝐴), whereas 𝐿 is the field generated by 𝐾 and the algebraic element 𝐴. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| Ref | Expression |
|---|---|
| algextdeg | ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeg.k | . . 3 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 2 | algextdeg.l | . . 3 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 3 | algextdeg.d | . . 3 ⊢ 𝐷 = (deg1‘𝐸) | |
| 4 | algextdeg.m | . . 3 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 5 | algextdeg.f | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 6 | algextdeg.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 7 | algextdeg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 8 | eqid 2736 | . . 3 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
| 9 | eqid 2736 | . . 3 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
| 10 | eqid 2736 | . . 3 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
| 11 | fveq2 6881 | . . . . 5 ⊢ (𝑞 = 𝑝 → ((𝐸 evalSub1 𝐹)‘𝑞) = ((𝐸 evalSub1 𝐹)‘𝑝)) | |
| 12 | 11 | fveq1d 6883 | . . . 4 ⊢ (𝑞 = 𝑝 → (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴)) |
| 13 | 12 | cbvmptv 5230 | . . 3 ⊢ (𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) = (𝑝 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴)) |
| 14 | eceq1 8763 | . . . 4 ⊢ (𝑦 = 𝑥 → [𝑦]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})) = [𝑥]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) | |
| 15 | 14 | cbvmptv 5230 | . . 3 ⊢ (𝑦 ∈ (Base‘(Poly1‘𝐾)) ↦ [𝑦]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) = (𝑥 ∈ (Base‘(Poly1‘𝐾)) ↦ [𝑥]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) |
| 16 | eqid 2736 | . . 3 ⊢ (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}) = (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}) | |
| 17 | eqid 2736 | . . 3 ⊢ ((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) = ((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) | |
| 18 | imaeq2 6048 | . . . . 5 ⊢ (𝑟 = 𝑝 → ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟) = ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) | |
| 19 | 18 | unieqd 4901 | . . . 4 ⊢ (𝑟 = 𝑝 → ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟) = ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) |
| 20 | 19 | cbvmptv 5230 | . . 3 ⊢ (𝑟 ∈ (Base‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) ↦ ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟)) = (𝑝 ∈ (Base‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) ↦ ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) |
| 21 | eqid 2736 | . . 3 ⊢ (rem1p‘𝐾) = (rem1p‘𝐾) | |
| 22 | oveq1 7417 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑞(rem1p‘𝐾)(𝑀‘𝐴)) = (𝑝(rem1p‘𝐾)(𝑀‘𝐴))) | |
| 23 | 22 | cbvmptv 5230 | . . 3 ⊢ (𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) = (𝑝 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑝(rem1p‘𝐾)(𝑀‘𝐴))) |
| 24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23 | algextdeglem6 33761 | . 2 ⊢ (𝜑 → (dim‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) = (dim‘((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) “s (Poly1‘𝐾)))) |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20 | algextdeglem4 33759 | . 2 ⊢ (𝜑 → (dim‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) = (𝐿[:]𝐾)) |
| 26 | eqid 2736 | . . 3 ⊢ (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) | |
| 27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23, 26 | algextdeglem8 33763 | . 2 ⊢ (𝜑 → (dim‘((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) “s (Poly1‘𝐾))) = (𝐷‘(𝑀‘𝐴))) |
| 28 | 24, 25, 27 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 {csn 4606 ∪ cuni 4888 ↦ cmpt 5206 ◡ccnv 5658 “ cima 5662 ‘cfv 6536 (class class class)co 7410 [cec 8722 -∞cmnf 11272 [,)cico 13369 Basecbs 17233 ↾s cress 17256 0gc0g 17458 “s cimas 17523 /s cqus 17524 ~QG cqg 19110 Fieldcfield 20695 SubDRingcsdrg 20751 Poly1cpl1 22117 evalSub1 ces1 22256 deg1cdg1 26016 rem1pcr1p 26091 fldGen cfldgen 33309 dimcldim 33643 [:]cextdg 33686 IntgRing cirng 33729 minPoly cminply 33738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 ax-ac2 10482 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-rpss 7722 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-ec 8726 df-qs 8730 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-inf 9460 df-oi 9529 df-r1 9783 df-rank 9784 df-dju 9920 df-card 9958 df-acn 9961 df-ac 10135 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-ico 13373 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ocomp 17297 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-imas 17527 df-qus 17528 df-mre 17603 df-mrc 17604 df-mri 17605 df-acs 17606 df-proset 18311 df-drs 18312 df-poset 18330 df-ipo 18543 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-nsg 19112 df-eqg 19113 df-ghm 19201 df-gim 19247 df-cntz 19305 df-oppg 19334 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-irred 20324 df-invr 20353 df-dvr 20366 df-rhm 20437 df-nzr 20478 df-subrng 20511 df-subrg 20535 df-rlreg 20659 df-domn 20660 df-idom 20661 df-drng 20696 df-field 20697 df-sdrg 20752 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lmhm 20985 df-lmim 20986 df-lmic 20987 df-lbs 21038 df-lvec 21066 df-sra 21136 df-rgmod 21137 df-lidl 21174 df-rsp 21175 df-2idl 21216 df-lpidl 21288 df-lpir 21289 df-pid 21303 df-cnfld 21321 df-dsmm 21697 df-frlm 21712 df-uvc 21748 df-lindf 21771 df-linds 21772 df-assa 21818 df-asp 21819 df-ascl 21820 df-psr 21874 df-mvr 21875 df-mpl 21876 df-opsr 21878 df-evls 22037 df-evl 22038 df-psr1 22120 df-vr1 22121 df-ply1 22122 df-coe1 22123 df-evls1 22258 df-evl1 22259 df-mdeg 26017 df-deg1 26018 df-mon1 26093 df-uc1p 26094 df-q1p 26095 df-r1p 26096 df-ig1p 26097 df-fldgen 33310 df-mxidl 33480 df-dim 33644 df-fldext 33687 df-extdg 33688 df-irng 33730 df-minply 33739 |
| This theorem is referenced by: rtelextdg2lem 33765 constrcon 33813 |
| Copyright terms: Public domain | W3C validator |