![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeg | Structured version Visualization version GIF version |
Description: The degree of an algebraic field extension is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
algextdeg.d | ⊢ 𝐷 = ( deg1 ‘𝐸) |
algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
Ref | Expression |
---|---|
algextdeg | ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeg.k | . . 3 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
2 | algextdeg.l | . . 3 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
3 | algextdeg.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝐸) | |
4 | algextdeg.m | . . 3 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
5 | algextdeg.f | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
6 | algextdeg.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
7 | algextdeg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
8 | eqid 2731 | . . 3 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
9 | eqid 2731 | . . 3 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
10 | eqid 2731 | . . 3 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
11 | fveq2 6891 | . . . . 5 ⊢ (𝑞 = 𝑝 → ((𝐸 evalSub1 𝐹)‘𝑞) = ((𝐸 evalSub1 𝐹)‘𝑝)) | |
12 | 11 | fveq1d 6893 | . . . 4 ⊢ (𝑞 = 𝑝 → (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴)) |
13 | 12 | cbvmptv 5261 | . . 3 ⊢ (𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) = (𝑝 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴)) |
14 | eceq1 8747 | . . . 4 ⊢ (𝑦 = 𝑥 → [𝑦]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})) = [𝑥]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) | |
15 | 14 | cbvmptv 5261 | . . 3 ⊢ (𝑦 ∈ (Base‘(Poly1‘𝐾)) ↦ [𝑦]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) = (𝑥 ∈ (Base‘(Poly1‘𝐾)) ↦ [𝑥]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) |
16 | eqid 2731 | . . 3 ⊢ (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}) = (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}) | |
17 | eqid 2731 | . . 3 ⊢ ((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) = ((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) | |
18 | imaeq2 6055 | . . . . 5 ⊢ (𝑟 = 𝑝 → ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟) = ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) | |
19 | 18 | unieqd 4922 | . . . 4 ⊢ (𝑟 = 𝑝 → ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟) = ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) |
20 | 19 | cbvmptv 5261 | . . 3 ⊢ (𝑟 ∈ (Base‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) ↦ ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟)) = (𝑝 ∈ (Base‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) ↦ ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) |
21 | eqid 2731 | . . 3 ⊢ (rem1p‘𝐾) = (rem1p‘𝐾) | |
22 | oveq1 7419 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑞(rem1p‘𝐾)(𝑀‘𝐴)) = (𝑝(rem1p‘𝐾)(𝑀‘𝐴))) | |
23 | 22 | cbvmptv 5261 | . . 3 ⊢ (𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) = (𝑝 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑝(rem1p‘𝐾)(𝑀‘𝐴))) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23 | algextdeglem6 33082 | . 2 ⊢ (𝜑 → (dim‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) = (dim‘((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) “s (Poly1‘𝐾)))) |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20 | algextdeglem4 33080 | . 2 ⊢ (𝜑 → (dim‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) = (𝐿[:]𝐾)) |
26 | eqid 2731 | . . 3 ⊢ (◡( deg1 ‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) = (◡( deg1 ‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) | |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23, 26 | algextdeglem8 33084 | . 2 ⊢ (𝜑 → (dim‘((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) “s (Poly1‘𝐾))) = (𝐷‘(𝑀‘𝐴))) |
28 | 24, 25, 27 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∪ cun 3946 {csn 4628 ∪ cuni 4908 ↦ cmpt 5231 ◡ccnv 5675 “ cima 5679 ‘cfv 6543 (class class class)co 7412 [cec 8707 -∞cmnf 11253 [,)cico 13333 Basecbs 17151 ↾s cress 17180 0gc0g 17392 “s cimas 17457 /s cqus 17458 ~QG cqg 19042 Fieldcfield 20505 SubDRingcsdrg 20549 Poly1cpl1 21933 evalSub1 ces1 22065 deg1 cdg1 25818 rem1pcr1p 25895 fldGen cfldgen 32685 dimcldim 32986 [:]cextdg 33023 IntgRing cirng 33051 minPoly cminply 33060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-reg 9593 ax-inf2 9642 ax-ac2 10464 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-rpss 7717 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-er 8709 df-ec 8711 df-qs 8715 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-inf 9444 df-oi 9511 df-r1 9765 df-rank 9766 df-dju 9902 df-card 9940 df-acn 9943 df-ac 10117 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-xnn0 12552 df-z 12566 df-dec 12685 df-uz 12830 df-ico 13337 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ocomp 17225 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-0g 17394 df-gsum 17395 df-prds 17400 df-pws 17402 df-imas 17461 df-qus 17462 df-mre 17537 df-mrc 17538 df-mri 17539 df-acs 17540 df-proset 18255 df-drs 18256 df-poset 18273 df-ipo 18488 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-mhm 18708 df-submnd 18709 df-grp 18861 df-minusg 18862 df-sbg 18863 df-mulg 18991 df-subg 19043 df-nsg 19044 df-eqg 19045 df-ghm 19132 df-gim 19177 df-cntz 19226 df-oppg 19255 df-lsm 19549 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-srg 20085 df-ring 20133 df-cring 20134 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-irred 20254 df-invr 20283 df-dvr 20296 df-rhm 20367 df-nzr 20408 df-subrng 20438 df-subrg 20463 df-drng 20506 df-field 20507 df-sdrg 20550 df-lmod 20620 df-lss 20691 df-lsp 20731 df-lmhm 20781 df-lmim 20782 df-lmic 20783 df-lbs 20834 df-lvec 20862 df-sra 20934 df-rgmod 20935 df-lidl 20936 df-rsp 20937 df-2idl 21010 df-lpidl 21085 df-lpir 21086 df-rlreg 21103 df-domn 21104 df-idom 21105 df-pid 21106 df-cnfld 21149 df-dsmm 21510 df-frlm 21525 df-uvc 21561 df-lindf 21584 df-linds 21585 df-assa 21631 df-asp 21632 df-ascl 21633 df-psr 21685 df-mvr 21686 df-mpl 21687 df-opsr 21689 df-evls 21859 df-evl 21860 df-psr1 21936 df-vr1 21937 df-ply1 21938 df-coe1 21939 df-evls1 22067 df-evl1 22068 df-mdeg 25819 df-deg1 25820 df-mon1 25897 df-uc1p 25898 df-q1p 25899 df-r1p 25900 df-ig1p 25901 df-fldgen 32686 df-mxidl 32865 df-dim 32987 df-fldext 33024 df-extdg 33025 df-irng 33052 df-minply 33061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |