| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeg | Structured version Visualization version GIF version | ||
| Description: The degree of an algebraic field extension (noted [𝐿:𝐾]) is the degree of the minimal polynomial 𝑀(𝐴), whereas 𝐿 is the field generated by 𝐾 and the algebraic element 𝐴. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| Ref | Expression |
|---|---|
| algextdeg | ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeg.k | . . 3 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 2 | algextdeg.l | . . 3 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 3 | algextdeg.d | . . 3 ⊢ 𝐷 = (deg1‘𝐸) | |
| 4 | algextdeg.m | . . 3 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 5 | algextdeg.f | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 6 | algextdeg.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 7 | algextdeg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 8 | eqid 2729 | . . 3 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
| 9 | eqid 2729 | . . 3 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
| 10 | eqid 2729 | . . 3 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
| 11 | fveq2 6826 | . . . . 5 ⊢ (𝑞 = 𝑝 → ((𝐸 evalSub1 𝐹)‘𝑞) = ((𝐸 evalSub1 𝐹)‘𝑝)) | |
| 12 | 11 | fveq1d 6828 | . . . 4 ⊢ (𝑞 = 𝑝 → (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴)) |
| 13 | 12 | cbvmptv 5199 | . . 3 ⊢ (𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) = (𝑝 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴)) |
| 14 | eceq1 8671 | . . . 4 ⊢ (𝑦 = 𝑥 → [𝑦]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})) = [𝑥]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) | |
| 15 | 14 | cbvmptv 5199 | . . 3 ⊢ (𝑦 ∈ (Base‘(Poly1‘𝐾)) ↦ [𝑦]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) = (𝑥 ∈ (Base‘(Poly1‘𝐾)) ↦ [𝑥]((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) |
| 16 | eqid 2729 | . . 3 ⊢ (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}) = (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}) | |
| 17 | eqid 2729 | . . 3 ⊢ ((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) = ((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)}))) | |
| 18 | imaeq2 6011 | . . . . 5 ⊢ (𝑟 = 𝑝 → ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟) = ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) | |
| 19 | 18 | unieqd 4874 | . . . 4 ⊢ (𝑟 = 𝑝 → ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟) = ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) |
| 20 | 19 | cbvmptv 5199 | . . 3 ⊢ (𝑟 ∈ (Base‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) ↦ ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟)) = (𝑝 ∈ (Base‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) ↦ ∪ ((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝)) |
| 21 | eqid 2729 | . . 3 ⊢ (rem1p‘𝐾) = (rem1p‘𝐾) | |
| 22 | oveq1 7360 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑞(rem1p‘𝐾)(𝑀‘𝐴)) = (𝑝(rem1p‘𝐾)(𝑀‘𝐴))) | |
| 23 | 22 | cbvmptv 5199 | . . 3 ⊢ (𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) = (𝑝 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑝(rem1p‘𝐾)(𝑀‘𝐴))) |
| 24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23 | algextdeglem6 33688 | . 2 ⊢ (𝜑 → (dim‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) = (dim‘((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) “s (Poly1‘𝐾)))) |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20 | algextdeglem4 33686 | . 2 ⊢ (𝜑 → (dim‘((Poly1‘𝐾) /s ((Poly1‘𝐾) ~QG (◡(𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g‘𝐿)})))) = (𝐿[:]𝐾)) |
| 26 | eqid 2729 | . . 3 ⊢ (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) | |
| 27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23, 26 | algextdeglem8 33690 | . 2 ⊢ (𝜑 → (dim‘((𝑞 ∈ (Base‘(Poly1‘𝐾)) ↦ (𝑞(rem1p‘𝐾)(𝑀‘𝐴))) “s (Poly1‘𝐾))) = (𝐷‘(𝑀‘𝐴))) |
| 28 | 24, 25, 27 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 {csn 4579 ∪ cuni 4861 ↦ cmpt 5176 ◡ccnv 5622 “ cima 5626 ‘cfv 6486 (class class class)co 7353 [cec 8630 -∞cmnf 11166 [,)cico 13268 Basecbs 17138 ↾s cress 17159 0gc0g 17361 “s cimas 17426 /s cqus 17427 ~QG cqg 19019 Fieldcfield 20633 SubDRingcsdrg 20689 Poly1cpl1 22077 evalSub1 ces1 22216 deg1cdg1 25975 rem1pcr1p 26050 fldGen cfldgen 33259 dimcldim 33570 [:]cextdg 33612 IntgRing cirng 33654 minPoly cminply 33665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-rpss 7663 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-ec 8634 df-qs 8638 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-inf 9352 df-oi 9421 df-r1 9679 df-rank 9680 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-ico 13272 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ocomp 17200 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-imas 17430 df-qus 17431 df-mre 17506 df-mrc 17507 df-mri 17508 df-acs 17509 df-proset 18218 df-drs 18219 df-poset 18237 df-ipo 18452 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-nsg 19021 df-eqg 19022 df-ghm 19110 df-gim 19156 df-cntz 19214 df-oppg 19243 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-irred 20262 df-invr 20291 df-dvr 20304 df-rhm 20375 df-nzr 20416 df-subrng 20449 df-subrg 20473 df-rlreg 20597 df-domn 20598 df-idom 20599 df-drng 20634 df-field 20635 df-sdrg 20690 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lmhm 20944 df-lmim 20945 df-lmic 20946 df-lbs 20997 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-rsp 21134 df-2idl 21175 df-lpidl 21247 df-lpir 21248 df-pid 21262 df-cnfld 21280 df-dsmm 21657 df-frlm 21672 df-uvc 21708 df-lindf 21731 df-linds 21732 df-assa 21778 df-asp 21779 df-ascl 21780 df-psr 21834 df-mvr 21835 df-mpl 21836 df-opsr 21838 df-evls 21997 df-evl 21998 df-psr1 22080 df-vr1 22081 df-ply1 22082 df-coe1 22083 df-evls1 22218 df-evl1 22219 df-mdeg 25976 df-deg1 25977 df-mon1 26052 df-uc1p 26053 df-q1p 26054 df-r1p 26055 df-ig1p 26056 df-fldgen 33260 df-mxidl 33407 df-dim 33571 df-fldext 33613 df-extdg 33614 df-irng 33655 df-minply 33666 |
| This theorem is referenced by: rtelextdg2lem 33692 constrcon 33740 |
| Copyright terms: Public domain | W3C validator |