Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeg Structured version   Visualization version   GIF version

Theorem algextdeg 33764
Description: The degree of an algebraic field extension (noted [𝐿:𝐾]) is the degree of the minimal polynomial 𝑀(𝐴), whereas 𝐿 is the field generated by 𝐾 and the algebraic element 𝐴. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
Assertion
Ref Expression
algextdeg (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀𝐴)))

Proof of Theorem algextdeg
Dummy variables 𝑝 𝑞 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algextdeg.k . . 3 𝐾 = (𝐸s 𝐹)
2 algextdeg.l . . 3 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
3 algextdeg.d . . 3 𝐷 = (deg1𝐸)
4 algextdeg.m . . 3 𝑀 = (𝐸 minPoly 𝐹)
5 algextdeg.f . . 3 (𝜑𝐸 ∈ Field)
6 algextdeg.e . . 3 (𝜑𝐹 ∈ (SubDRing‘𝐸))
7 algextdeg.a . . 3 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
8 eqid 2736 . . 3 (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹)
9 eqid 2736 . . 3 (Poly1𝐾) = (Poly1𝐾)
10 eqid 2736 . . 3 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
11 fveq2 6881 . . . . 5 (𝑞 = 𝑝 → ((𝐸 evalSub1 𝐹)‘𝑞) = ((𝐸 evalSub1 𝐹)‘𝑝))
1211fveq1d 6883 . . . 4 (𝑞 = 𝑝 → (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴))
1312cbvmptv 5230 . . 3 (𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) = (𝑝 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑝)‘𝐴))
14 eceq1 8763 . . . 4 (𝑦 = 𝑥 → [𝑦]((Poly1𝐾) ~QG ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)})) = [𝑥]((Poly1𝐾) ~QG ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)})))
1514cbvmptv 5230 . . 3 (𝑦 ∈ (Base‘(Poly1𝐾)) ↦ [𝑦]((Poly1𝐾) ~QG ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)}))) = (𝑥 ∈ (Base‘(Poly1𝐾)) ↦ [𝑥]((Poly1𝐾) ~QG ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)})))
16 eqid 2736 . . 3 ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)}) = ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)})
17 eqid 2736 . . 3 ((Poly1𝐾) /s ((Poly1𝐾) ~QG ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)}))) = ((Poly1𝐾) /s ((Poly1𝐾) ~QG ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)})))
18 imaeq2 6048 . . . . 5 (𝑟 = 𝑝 → ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟) = ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝))
1918unieqd 4901 . . . 4 (𝑟 = 𝑝 ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟) = ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝))
2019cbvmptv 5230 . . 3 (𝑟 ∈ (Base‘((Poly1𝐾) /s ((Poly1𝐾) ~QG ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)})))) ↦ ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑟)) = (𝑝 ∈ (Base‘((Poly1𝐾) /s ((Poly1𝐾) ~QG ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)})))) ↦ ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ 𝑝))
21 eqid 2736 . . 3 (rem1p𝐾) = (rem1p𝐾)
22 oveq1 7417 . . . 4 (𝑞 = 𝑝 → (𝑞(rem1p𝐾)(𝑀𝐴)) = (𝑝(rem1p𝐾)(𝑀𝐴)))
2322cbvmptv 5230 . . 3 (𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (𝑞(rem1p𝐾)(𝑀𝐴))) = (𝑝 ∈ (Base‘(Poly1𝐾)) ↦ (𝑝(rem1p𝐾)(𝑀𝐴)))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23algextdeglem6 33761 . 2 (𝜑 → (dim‘((Poly1𝐾) /s ((Poly1𝐾) ~QG ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)})))) = (dim‘((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (𝑞(rem1p𝐾)(𝑀𝐴))) “s (Poly1𝐾))))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20algextdeglem4 33759 . 2 (𝜑 → (dim‘((Poly1𝐾) /s ((Poly1𝐾) ~QG ((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴)) “ {(0g𝐿)})))) = (𝐿[:]𝐾))
26 eqid 2736 . . 3 ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴)))) = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23, 26algextdeglem8 33763 . 2 (𝜑 → (dim‘((𝑞 ∈ (Base‘(Poly1𝐾)) ↦ (𝑞(rem1p𝐾)(𝑀𝐴))) “s (Poly1𝐾))) = (𝐷‘(𝑀𝐴)))
2824, 25, 273eqtr3d 2779 1 (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3929  {csn 4606   cuni 4888  cmpt 5206  ccnv 5658  cima 5662  cfv 6536  (class class class)co 7410  [cec 8722  -∞cmnf 11272  [,)cico 13369  Basecbs 17233  s cress 17256  0gc0g 17458  s cimas 17523   /s cqus 17524   ~QG cqg 19110  Fieldcfield 20695  SubDRingcsdrg 20751  Poly1cpl1 22117   evalSub1 ces1 22256  deg1cdg1 26016  rem1pcr1p 26091   fldGen cfldgen 33309  dimcldim 33643  [:]cextdg 33686   IntgRing cirng 33729   minPoly cminply 33738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-rpss 7722  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-inf 9460  df-oi 9529  df-r1 9783  df-rank 9784  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-ico 13373  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ocomp 17297  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-imas 17527  df-qus 17528  df-mre 17603  df-mrc 17604  df-mri 17605  df-acs 17606  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-irred 20324  df-invr 20353  df-dvr 20366  df-rhm 20437  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-domn 20660  df-idom 20661  df-drng 20696  df-field 20697  df-sdrg 20752  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lmim 20986  df-lmic 20987  df-lbs 21038  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-lpidl 21288  df-lpir 21289  df-pid 21303  df-cnfld 21321  df-dsmm 21697  df-frlm 21712  df-uvc 21748  df-lindf 21771  df-linds 21772  df-assa 21818  df-asp 21819  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-evls 22037  df-evl 22038  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-evls1 22258  df-evl1 22259  df-mdeg 26017  df-deg1 26018  df-mon1 26093  df-uc1p 26094  df-q1p 26095  df-r1p 26096  df-ig1p 26097  df-fldgen 33310  df-mxidl 33480  df-dim 33644  df-fldext 33687  df-extdg 33688  df-irng 33730  df-minply 33739
This theorem is referenced by:  rtelextdg2lem  33765  constrcon  33813
  Copyright terms: Public domain W3C validator