![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeg | Structured version Visualization version GIF version |
Description: The degree of an algebraic field extension is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
algextdeg.k | β’ πΎ = (πΈ βΎs πΉ) |
algextdeg.l | β’ πΏ = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) |
algextdeg.d | β’ π· = ( deg1 βπΈ) |
algextdeg.m | β’ π = (πΈ minPoly πΉ) |
algextdeg.f | β’ (π β πΈ β Field) |
algextdeg.e | β’ (π β πΉ β (SubDRingβπΈ)) |
algextdeg.a | β’ (π β π΄ β (πΈ IntgRing πΉ)) |
Ref | Expression |
---|---|
algextdeg | β’ (π β (πΏ[:]πΎ) = (π·β(πβπ΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeg.k | . . 3 β’ πΎ = (πΈ βΎs πΉ) | |
2 | algextdeg.l | . . 3 β’ πΏ = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) | |
3 | algextdeg.d | . . 3 β’ π· = ( deg1 βπΈ) | |
4 | algextdeg.m | . . 3 β’ π = (πΈ minPoly πΉ) | |
5 | algextdeg.f | . . 3 β’ (π β πΈ β Field) | |
6 | algextdeg.e | . . 3 β’ (π β πΉ β (SubDRingβπΈ)) | |
7 | algextdeg.a | . . 3 β’ (π β π΄ β (πΈ IntgRing πΉ)) | |
8 | eqid 2724 | . . 3 β’ (πΈ evalSub1 πΉ) = (πΈ evalSub1 πΉ) | |
9 | eqid 2724 | . . 3 β’ (Poly1βπΎ) = (Poly1βπΎ) | |
10 | eqid 2724 | . . 3 β’ (Baseβ(Poly1βπΎ)) = (Baseβ(Poly1βπΎ)) | |
11 | fveq2 6881 | . . . . 5 β’ (π = π β ((πΈ evalSub1 πΉ)βπ) = ((πΈ evalSub1 πΉ)βπ)) | |
12 | 11 | fveq1d 6883 | . . . 4 β’ (π = π β (((πΈ evalSub1 πΉ)βπ)βπ΄) = (((πΈ evalSub1 πΉ)βπ)βπ΄)) |
13 | 12 | cbvmptv 5251 | . . 3 β’ (π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) = (π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) |
14 | eceq1 8736 | . . . 4 β’ (π¦ = π₯ β [π¦]((Poly1βπΎ) ~QG (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)})) = [π₯]((Poly1βπΎ) ~QG (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)}))) | |
15 | 14 | cbvmptv 5251 | . . 3 β’ (π¦ β (Baseβ(Poly1βπΎ)) β¦ [π¦]((Poly1βπΎ) ~QG (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)}))) = (π₯ β (Baseβ(Poly1βπΎ)) β¦ [π₯]((Poly1βπΎ) ~QG (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)}))) |
16 | eqid 2724 | . . 3 β’ (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)}) = (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)}) | |
17 | eqid 2724 | . . 3 β’ ((Poly1βπΎ) /s ((Poly1βπΎ) ~QG (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)}))) = ((Poly1βπΎ) /s ((Poly1βπΎ) ~QG (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)}))) | |
18 | imaeq2 6045 | . . . . 5 β’ (π = π β ((π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β π) = ((π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β π)) | |
19 | 18 | unieqd 4912 | . . . 4 β’ (π = π β βͺ ((π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β π) = βͺ ((π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β π)) |
20 | 19 | cbvmptv 5251 | . . 3 β’ (π β (Baseβ((Poly1βπΎ) /s ((Poly1βπΎ) ~QG (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)})))) β¦ βͺ ((π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β π)) = (π β (Baseβ((Poly1βπΎ) /s ((Poly1βπΎ) ~QG (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)})))) β¦ βͺ ((π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β π)) |
21 | eqid 2724 | . . 3 β’ (rem1pβπΎ) = (rem1pβπΎ) | |
22 | oveq1 7408 | . . . 4 β’ (π = π β (π(rem1pβπΎ)(πβπ΄)) = (π(rem1pβπΎ)(πβπ΄))) | |
23 | 22 | cbvmptv 5251 | . . 3 β’ (π β (Baseβ(Poly1βπΎ)) β¦ (π(rem1pβπΎ)(πβπ΄))) = (π β (Baseβ(Poly1βπΎ)) β¦ (π(rem1pβπΎ)(πβπ΄))) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23 | algextdeglem6 33224 | . 2 β’ (π β (dimβ((Poly1βπΎ) /s ((Poly1βπΎ) ~QG (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)})))) = (dimβ((π β (Baseβ(Poly1βπΎ)) β¦ (π(rem1pβπΎ)(πβπ΄))) βs (Poly1βπΎ)))) |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20 | algextdeglem4 33222 | . 2 β’ (π β (dimβ((Poly1βπΎ) /s ((Poly1βπΎ) ~QG (β‘(π β (Baseβ(Poly1βπΎ)) β¦ (((πΈ evalSub1 πΉ)βπ)βπ΄)) β {(0gβπΏ)})))) = (πΏ[:]πΎ)) |
26 | eqid 2724 | . . 3 β’ (β‘( deg1 βπΎ) β (-β[,)(π·β(πβπ΄)))) = (β‘( deg1 βπΎ) β (-β[,)(π·β(πβπ΄)))) | |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 20, 21, 23, 26 | algextdeglem8 33226 | . 2 β’ (π β (dimβ((π β (Baseβ(Poly1βπΎ)) β¦ (π(rem1pβπΎ)(πβπ΄))) βs (Poly1βπΎ))) = (π·β(πβπ΄))) |
28 | 24, 25, 27 | 3eqtr3d 2772 | 1 β’ (π β (πΏ[:]πΎ) = (π·β(πβπ΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βͺ cun 3938 {csn 4620 βͺ cuni 4899 β¦ cmpt 5221 β‘ccnv 5665 β cima 5669 βcfv 6533 (class class class)co 7401 [cec 8696 -βcmnf 11242 [,)cico 13322 Basecbs 17142 βΎs cress 17171 0gc0g 17383 βs cimas 17448 /s cqus 17449 ~QG cqg 19038 Fieldcfield 20577 SubDRingcsdrg 20626 Poly1cpl1 22018 evalSub1 ces1 22153 deg1 cdg1 25908 rem1pcr1p 25985 fldGen cfldgen 32832 dimcldim 33128 [:]cextdg 33165 IntgRing cirng 33193 minPoly cminply 33202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-reg 9582 ax-inf2 9631 ax-ac2 10453 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 ax-mulf 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-ofr 7664 df-rpss 7706 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8698 df-ec 8700 df-qs 8704 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-sup 9432 df-inf 9433 df-oi 9500 df-r1 9754 df-rank 9755 df-dju 9891 df-card 9929 df-acn 9932 df-ac 10106 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-ico 13326 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-starv 17210 df-sca 17211 df-vsca 17212 df-ip 17213 df-tset 17214 df-ple 17215 df-ocomp 17216 df-ds 17217 df-unif 17218 df-hom 17219 df-cco 17220 df-0g 17385 df-gsum 17386 df-prds 17391 df-pws 17393 df-imas 17452 df-qus 17453 df-mre 17528 df-mrc 17529 df-mri 17530 df-acs 17531 df-proset 18249 df-drs 18250 df-poset 18267 df-ipo 18482 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-mhm 18702 df-submnd 18703 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18985 df-subg 19039 df-nsg 19040 df-eqg 19041 df-ghm 19128 df-gim 19173 df-cntz 19222 df-oppg 19251 df-lsm 19545 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-srg 20081 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-irred 20250 df-invr 20279 df-dvr 20292 df-rhm 20363 df-nzr 20404 df-subrng 20435 df-subrg 20460 df-drng 20578 df-field 20579 df-sdrg 20627 df-lmod 20697 df-lss 20768 df-lsp 20808 df-lmhm 20859 df-lmim 20860 df-lmic 20861 df-lbs 20912 df-lvec 20940 df-sra 21010 df-rgmod 21011 df-lidl 21056 df-rsp 21057 df-2idl 21096 df-lpidl 21164 df-lpir 21165 df-rlreg 21182 df-domn 21183 df-idom 21184 df-pid 21185 df-cnfld 21228 df-dsmm 21594 df-frlm 21609 df-uvc 21645 df-lindf 21668 df-linds 21669 df-assa 21715 df-asp 21716 df-ascl 21717 df-psr 21770 df-mvr 21771 df-mpl 21772 df-opsr 21774 df-evls 21944 df-evl 21945 df-psr1 22021 df-vr1 22022 df-ply1 22023 df-coe1 22024 df-evls1 22155 df-evl1 22156 df-mdeg 25909 df-deg1 25910 df-mon1 25987 df-uc1p 25988 df-q1p 25989 df-r1p 25990 df-ig1p 25991 df-fldgen 32833 df-mxidl 33011 df-dim 33129 df-fldext 33166 df-extdg 33167 df-irng 33194 df-minply 33203 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |