Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochn0nv Structured version   Visualization version   GIF version

Theorem dochn0nv 39386
Description: An orthocomplement is nonzero iff the double orthocomplement is not the whole vector space. (Contributed by NM, 1-Jan-2015.)
Hypotheses
Ref Expression
dochn0nv.h 𝐻 = (LHyp‘𝐾)
dochn0nv.o = ((ocH‘𝐾)‘𝑊)
dochn0nv.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochn0nv.v 𝑉 = (Base‘𝑈)
dochn0nv.z 0 = (0g𝑈)
dochn0nv.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dochn0nv.x (𝜑𝑋𝑉)
Assertion
Ref Expression
dochn0nv (𝜑 → (( 𝑋) ≠ { 0 } ↔ ( ‘( 𝑋)) ≠ 𝑉))

Proof of Theorem dochn0nv
StepHypRef Expression
1 dochn0nv.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dochn0nv.x . . . . . 6 (𝜑𝑋𝑉)
3 dochn0nv.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
4 eqid 2738 . . . . . . 7 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
5 dochn0nv.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 dochn0nv.v . . . . . . 7 𝑉 = (Base‘𝑈)
7 dochn0nv.o . . . . . . 7 = ((ocH‘𝐾)‘𝑊)
83, 4, 5, 6, 7dochcl 39364 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
91, 2, 8syl2anc 584 . . . . 5 (𝜑 → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
103, 4, 7dochoc 39378 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘( 𝑋))) = ( 𝑋))
111, 9, 10syl2anc 584 . . . 4 (𝜑 → ( ‘( ‘( 𝑋))) = ( 𝑋))
12 dochn0nv.z . . . . . 6 0 = (0g𝑈)
133, 5, 7, 6, 12doch1 39370 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑉) = { 0 })
141, 13syl 17 . . . 4 (𝜑 → ( 𝑉) = { 0 })
1511, 14eqeq12d 2754 . . 3 (𝜑 → (( ‘( ‘( 𝑋))) = ( 𝑉) ↔ ( 𝑋) = { 0 }))
163, 5, 6, 7dochssv 39366 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) ⊆ 𝑉)
171, 2, 16syl2anc 584 . . . . 5 (𝜑 → ( 𝑋) ⊆ 𝑉)
183, 4, 5, 6, 7dochcl 39364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ⊆ 𝑉) → ( ‘( 𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
191, 17, 18syl2anc 584 . . . 4 (𝜑 → ( ‘( 𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
203, 4, 5, 6dih1rn 39298 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊))
211, 20syl 17 . . . 4 (𝜑𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊))
223, 4, 7, 1, 19, 21doch11 39384 . . 3 (𝜑 → (( ‘( ‘( 𝑋))) = ( 𝑉) ↔ ( ‘( 𝑋)) = 𝑉))
2315, 22bitr3d 280 . 2 (𝜑 → (( 𝑋) = { 0 } ↔ ( ‘( 𝑋)) = 𝑉))
2423necon3bid 2988 1 (𝜑 → (( 𝑋) ≠ { 0 } ↔ ( ‘( 𝑋)) ≠ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wss 3888  {csn 4563  ran crn 5592  cfv 6435  Basecbs 16910  0gc0g 17148  HLchlt 37361  LHypclh 37995  DVecHcdvh 39089  DIsoHcdih 39239  ocHcoch 39358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-riotaBAD 36964
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8040  df-undef 8087  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-er 8496  df-map 8615  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-n0 12232  df-z 12318  df-uz 12581  df-fz 13238  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-sca 16976  df-vsca 16977  df-0g 17150  df-proset 18011  df-poset 18029  df-plt 18046  df-lub 18062  df-glb 18063  df-join 18064  df-meet 18065  df-p0 18141  df-p1 18142  df-lat 18148  df-clat 18215  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-subg 18750  df-cntz 18921  df-lsm 19239  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-dvr 19923  df-drng 19991  df-lmod 20123  df-lss 20192  df-lsp 20232  df-lvec 20363  df-oposet 37187  df-ol 37189  df-oml 37190  df-covers 37277  df-ats 37278  df-atl 37309  df-cvlat 37333  df-hlat 37362  df-llines 37509  df-lplanes 37510  df-lvols 37511  df-lines 37512  df-psubsp 37514  df-pmap 37515  df-padd 37807  df-lhyp 37999  df-laut 38000  df-ldil 38115  df-ltrn 38116  df-trl 38170  df-tendo 38766  df-edring 38768  df-disoa 39040  df-dvech 39090  df-dib 39150  df-dic 39184  df-dih 39240  df-doch 39359
This theorem is referenced by:  dochsnnz  39461  dochsatshpb  39463  dochkrsat  39466  dochkrsat2  39467  dochsnkrlem1  39480
  Copyright terms: Public domain W3C validator