Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochkrsat2 Structured version   Visualization version   GIF version

Theorem dochkrsat2 41561
Description: The orthocomplement of a kernel is an atom iff the double orthocomplement is not the vector space. (Contributed by NM, 1-Jan-2015.)
Hypotheses
Ref Expression
dochkrsat2.h 𝐻 = (LHyp‘𝐾)
dochkrsat2.o = ((ocH‘𝐾)‘𝑊)
dochkrsat2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochkrsat2.v 𝑉 = (Base‘𝑈)
dochkrsat2.a 𝐴 = (LSAtoms‘𝑈)
dochkrsat2.f 𝐹 = (LFnl‘𝑈)
dochkrsat2.l 𝐿 = (LKer‘𝑈)
dochkrsat2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dochkrsat2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
dochkrsat2 (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ↔ ( ‘(𝐿𝐺)) ∈ 𝐴))

Proof of Theorem dochkrsat2
StepHypRef Expression
1 dochkrsat2.h . . 3 𝐻 = (LHyp‘𝐾)
2 dochkrsat2.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 dochkrsat2.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 dochkrsat2.v . . 3 𝑉 = (Base‘𝑈)
5 eqid 2731 . . 3 (0g𝑈) = (0g𝑈)
6 dochkrsat2.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 dochkrsat2.f . . . 4 𝐹 = (LFnl‘𝑈)
8 dochkrsat2.l . . . 4 𝐿 = (LKer‘𝑈)
91, 3, 6dvhlmod 41215 . . . 4 (𝜑𝑈 ∈ LMod)
10 dochkrsat2.g . . . 4 (𝜑𝐺𝐹)
114, 7, 8, 9, 10lkrssv 39201 . . 3 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
121, 2, 3, 4, 5, 6, 11dochn0nv 41480 . 2 (𝜑 → (( ‘(𝐿𝐺)) ≠ {(0g𝑈)} ↔ ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
13 dochkrsat2.a . . 3 𝐴 = (LSAtoms‘𝑈)
141, 2, 3, 13, 7, 8, 5, 6, 10dochkrsat 41560 . 2 (𝜑 → (( ‘(𝐿𝐺)) ≠ {(0g𝑈)} ↔ ( ‘(𝐿𝐺)) ∈ 𝐴))
1512, 14bitr3d 281 1 (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ↔ ( ‘(𝐿𝐺)) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  {csn 4575  cfv 6487  Basecbs 17126  0gc0g 17349  LSAtomsclsa 39079  LFnlclfn 39162  LKerclk 39190  HLchlt 39455  LHypclh 40089  DVecHcdvh 41183  ocHcoch 41452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-riotaBAD 39058
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-undef 8209  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-sca 17183  df-vsca 17184  df-0g 17351  df-proset 18206  df-poset 18225  df-plt 18240  df-lub 18256  df-glb 18257  df-join 18258  df-meet 18259  df-p0 18335  df-p1 18336  df-lat 18344  df-clat 18411  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-grp 18855  df-minusg 18856  df-sbg 18857  df-subg 19042  df-cntz 19235  df-lsm 19554  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-dvr 20325  df-drng 20652  df-lmod 20801  df-lss 20871  df-lsp 20911  df-lvec 21043  df-lsatoms 39081  df-lshyp 39082  df-lfl 39163  df-lkr 39191  df-oposet 39281  df-ol 39283  df-oml 39284  df-covers 39371  df-ats 39372  df-atl 39403  df-cvlat 39427  df-hlat 39456  df-llines 39603  df-lplanes 39604  df-lvols 39605  df-lines 39606  df-psubsp 39608  df-pmap 39609  df-padd 39901  df-lhyp 40093  df-laut 40094  df-ldil 40209  df-ltrn 40210  df-trl 40264  df-tgrp 40848  df-tendo 40860  df-edring 40862  df-dveca 41108  df-disoa 41134  df-dvech 41184  df-dib 41244  df-dic 41278  df-dih 41334  df-doch 41453  df-djh 41500
This theorem is referenced by:  dochsnkrlem2  41575  dochkr1  41583  dochkr1OLDN  41584  lcfl3  41599  lcfl8b  41609
  Copyright terms: Public domain W3C validator