Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochkrsat2 Structured version   Visualization version   GIF version

Theorem dochkrsat2 38586
Description: The orthocomplement of a kernel is an atom iff the double orthocomplement is not the vector space. (Contributed by NM, 1-Jan-2015.)
Hypotheses
Ref Expression
dochkrsat2.h 𝐻 = (LHyp‘𝐾)
dochkrsat2.o = ((ocH‘𝐾)‘𝑊)
dochkrsat2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochkrsat2.v 𝑉 = (Base‘𝑈)
dochkrsat2.a 𝐴 = (LSAtoms‘𝑈)
dochkrsat2.f 𝐹 = (LFnl‘𝑈)
dochkrsat2.l 𝐿 = (LKer‘𝑈)
dochkrsat2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dochkrsat2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
dochkrsat2 (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ↔ ( ‘(𝐿𝐺)) ∈ 𝐴))

Proof of Theorem dochkrsat2
StepHypRef Expression
1 dochkrsat2.h . . 3 𝐻 = (LHyp‘𝐾)
2 dochkrsat2.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 dochkrsat2.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 dochkrsat2.v . . 3 𝑉 = (Base‘𝑈)
5 eqid 2821 . . 3 (0g𝑈) = (0g𝑈)
6 dochkrsat2.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 dochkrsat2.f . . . 4 𝐹 = (LFnl‘𝑈)
8 dochkrsat2.l . . . 4 𝐿 = (LKer‘𝑈)
91, 3, 6dvhlmod 38240 . . . 4 (𝜑𝑈 ∈ LMod)
10 dochkrsat2.g . . . 4 (𝜑𝐺𝐹)
114, 7, 8, 9, 10lkrssv 36226 . . 3 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
121, 2, 3, 4, 5, 6, 11dochn0nv 38505 . 2 (𝜑 → (( ‘(𝐿𝐺)) ≠ {(0g𝑈)} ↔ ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
13 dochkrsat2.a . . 3 𝐴 = (LSAtoms‘𝑈)
141, 2, 3, 13, 7, 8, 5, 6, 10dochkrsat 38585 . 2 (𝜑 → (( ‘(𝐿𝐺)) ≠ {(0g𝑈)} ↔ ( ‘(𝐿𝐺)) ∈ 𝐴))
1512, 14bitr3d 283 1 (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ↔ ( ‘(𝐿𝐺)) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  {csn 4560  cfv 6349  Basecbs 16477  0gc0g 16707  LSAtomsclsa 36104  LFnlclfn 36187  LKerclk 36215  HLchlt 36480  LHypclh 37114  DVecHcdvh 38208  ocHcoch 38477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-undef 7933  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-0g 16709  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lvec 19869  df-lsatoms 36106  df-lshyp 36107  df-lfl 36188  df-lkr 36216  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lvols 36630  df-lines 36631  df-psubsp 36633  df-pmap 36634  df-padd 36926  df-lhyp 37118  df-laut 37119  df-ldil 37234  df-ltrn 37235  df-trl 37289  df-tgrp 37873  df-tendo 37885  df-edring 37887  df-dveca 38133  df-disoa 38159  df-dvech 38209  df-dib 38269  df-dic 38303  df-dih 38359  df-doch 38478  df-djh 38525
This theorem is referenced by:  dochsnkrlem2  38600  dochkr1  38608  dochkr1OLDN  38609  lcfl3  38624  lcfl8b  38634
  Copyright terms: Public domain W3C validator