| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > msdcn | Structured version Visualization version GIF version | ||
| Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| msdcn.x | ⊢ 𝑋 = (Base‘𝑀) |
| msdcn.d | ⊢ 𝐷 = (dist‘𝑀) |
| msdcn.j | ⊢ 𝐽 = (TopOpen‘𝑀) |
| msdcn.2 | ⊢ 𝐾 = (topGen‘ran (,)) |
| Ref | Expression |
|---|---|
| msdcn | ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msdcn.x | . . . 4 ⊢ 𝑋 = (Base‘𝑀) | |
| 2 | msdcn.d | . . . 4 ⊢ 𝐷 = (dist‘𝑀) | |
| 3 | 1, 2 | msmet2 24348 | . . 3 ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋)) |
| 4 | eqid 2729 | . . . 4 ⊢ (MetOpen‘(𝐷 ↾ (𝑋 × 𝑋))) = (MetOpen‘(𝐷 ↾ (𝑋 × 𝑋))) | |
| 5 | msdcn.2 | . . . 4 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 6 | 4, 5 | metdcn2 24728 | . . 3 ⊢ ((𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (((MetOpen‘(𝐷 ↾ (𝑋 × 𝑋))) ×t (MetOpen‘(𝐷 ↾ (𝑋 × 𝑋)))) Cn 𝐾)) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (((MetOpen‘(𝐷 ↾ (𝑋 × 𝑋))) ×t (MetOpen‘(𝐷 ↾ (𝑋 × 𝑋)))) Cn 𝐾)) |
| 8 | msdcn.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑀) | |
| 9 | 2 | reseq1i 5946 | . . . . 5 ⊢ (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
| 10 | 8, 1, 9 | mstopn 24340 | . . . 4 ⊢ (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘(𝐷 ↾ (𝑋 × 𝑋)))) |
| 11 | 10, 10 | oveq12d 7405 | . . 3 ⊢ (𝑀 ∈ MetSp → (𝐽 ×t 𝐽) = ((MetOpen‘(𝐷 ↾ (𝑋 × 𝑋))) ×t (MetOpen‘(𝐷 ↾ (𝑋 × 𝑋))))) |
| 12 | 11 | oveq1d 7402 | . 2 ⊢ (𝑀 ∈ MetSp → ((𝐽 ×t 𝐽) Cn 𝐾) = (((MetOpen‘(𝐷 ↾ (𝑋 × 𝑋))) ×t (MetOpen‘(𝐷 ↾ (𝑋 × 𝑋)))) Cn 𝐾)) |
| 13 | 7, 12 | eleqtrrd 2831 | 1 ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5636 ran crn 5639 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 (,)cioo 13306 Basecbs 17179 distcds 17229 TopOpenctopn 17384 topGenctg 17400 Metcmet 21250 MetOpencmopn 21254 Cn ccn 23111 ×t ctx 23447 MetSpcms 24206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-ec 8673 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-ordt 17464 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-ps 18525 df-tsr 18526 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cn 23114 df-cnp 23115 df-tx 23449 df-hmeo 23642 df-xms 24208 df-ms 24209 df-tms 24210 |
| This theorem is referenced by: cnmpt1ds 24731 cnmpt2ds 24732 |
| Copyright terms: Public domain | W3C validator |