| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minplynzm1p | Structured version Visualization version GIF version | ||
| Description: If a minimal polynomial is nonzero, then it is monic. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| minplynzm1p.b | ⊢ 𝐵 = (Base‘𝐸) |
| minplynzm1p.z | ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) |
| minplynzm1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
| minplynzm1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| minplynzm1p.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| minplynzm1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| minplynzm1p.1 | ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) |
| minplynzm1p.u | ⊢ 𝑈 = (Monic1p‘(𝐸 ↾s 𝐹)) |
| Ref | Expression |
|---|---|
| minplynzm1p | ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
| 2 | eqid 2733 | . . 3 ⊢ (Poly1‘(𝐸 ↾s 𝐹)) = (Poly1‘(𝐸 ↾s 𝐹)) | |
| 3 | minplynzm1p.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 4 | minplynzm1p.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 5 | minplynzm1p.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 6 | minplynzm1p.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 7 | eqid 2733 | . . 3 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 8 | eqid 2733 | . . 3 ⊢ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} | |
| 9 | eqid 2733 | . . 3 ⊢ (RSpan‘(Poly1‘(𝐸 ↾s 𝐹))) = (RSpan‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 10 | eqid 2733 | . . 3 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 11 | minplynzm1p.m | . . 3 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplyval 33739 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) |
| 13 | eqid 2733 | . . . . . 6 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
| 14 | 13 | sdrgdrng 20707 | . . . . 5 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 15 | 5, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 16 | 4 | fldcrngd 20659 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 17 | sdrgsubrg 20708 | . . . . . 6 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 18 | 5, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 19 | 1, 2, 3, 16, 18, 6, 7, 8 | ply1annidl 33736 | . . . 4 ⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 20 | 12 | sneqd 4587 | . . . . . . 7 ⊢ (𝜑 → {(𝑀‘𝐴)} = {((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})}) |
| 21 | 20 | fveq2d 6832 | . . . . . 6 ⊢ (𝜑 → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) = ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ply1annig1p 33738 | . . . . . 6 ⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} = ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 23 | 21, 22 | eqtr4d 2771 | . . . . 5 ⊢ (𝜑 → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) |
| 24 | 15 | drngringd 20654 | . . . . . . 7 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) |
| 25 | 2 | ply1ring 22161 | . . . . . . 7 ⊢ ((𝐸 ↾s 𝐹) ∈ Ring → (Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring) |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring) |
| 27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplycl 33740 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 28 | minplynzm1p.1 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) | |
| 29 | eqid 2733 | . . . . . . . 8 ⊢ (Poly1‘𝐸) = (Poly1‘𝐸) | |
| 30 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘(Poly1‘(𝐸 ↾s 𝐹))) = (Base‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 31 | minplynzm1p.z | . . . . . . . 8 ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) | |
| 32 | 29, 13, 2, 30, 18, 31 | ressply10g 33537 | . . . . . . 7 ⊢ (𝜑 → 𝑍 = (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 33 | 28, 32 | neeqtrd 2998 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ≠ (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 34 | eqid 2733 | . . . . . . 7 ⊢ (0g‘(Poly1‘(𝐸 ↾s 𝐹))) = (0g‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 35 | 30, 34, 9 | pidlnz 33348 | . . . . . 6 ⊢ (((Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ (𝑀‘𝐴) ≠ (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 36 | 26, 27, 33, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 37 | 23, 36 | eqnetrrd 2997 | . . . 4 ⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 38 | eqid 2733 | . . . . 5 ⊢ (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) = (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 39 | eqid 2733 | . . . . 5 ⊢ (deg1‘(𝐸 ↾s 𝐹)) = (deg1‘(𝐸 ↾s 𝐹)) | |
| 40 | minplynzm1p.u | . . . . 5 ⊢ 𝑈 = (Monic1p‘(𝐸 ↾s 𝐹)) | |
| 41 | 2, 10, 34, 38, 39, 40 | ig1pval3 26111 | . . . 4 ⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) → (((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∧ ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈 ∧ ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) = inf(((deg1‘(𝐸 ↾s 𝐹)) “ ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∖ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))})), ℝ, < ))) |
| 42 | 15, 19, 37, 41 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∧ ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈 ∧ ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) = inf(((deg1‘(𝐸 ↾s 𝐹)) “ ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∖ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))})), ℝ, < ))) |
| 43 | 42 | simp2d 1143 | . 2 ⊢ (𝜑 → ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈) |
| 44 | 12, 43 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 ∖ cdif 3895 {csn 4575 dom cdm 5619 “ cima 5622 ‘cfv 6486 (class class class)co 7352 infcinf 9332 ℝcr 11012 < clt 11153 Basecbs 17122 ↾s cress 17143 0gc0g 17345 Ringcrg 20153 SubRingcsubrg 20486 DivRingcdr 20646 Fieldcfield 20647 SubDRingcsdrg 20703 LIdealclidl 21145 RSpancrsp 21146 Poly1cpl1 22090 evalSub1 ces1 22229 deg1cdg1 25987 Monic1pcmn1 26059 idlGen1pcig1p 26063 minPoly cminply 33733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-rhm 20392 df-subrng 20463 df-subrg 20487 df-rlreg 20611 df-drng 20648 df-field 20649 df-sdrg 20704 df-lmod 20797 df-lss 20867 df-lsp 20907 df-sra 21109 df-rgmod 21110 df-lidl 21147 df-rsp 21148 df-cnfld 21294 df-assa 21792 df-asp 21793 df-ascl 21794 df-psr 21848 df-mvr 21849 df-mpl 21850 df-opsr 21852 df-evls 22010 df-evl 22011 df-psr1 22093 df-vr1 22094 df-ply1 22095 df-coe1 22096 df-evls1 22231 df-evl1 22232 df-mdeg 25988 df-deg1 25989 df-mon1 26064 df-uc1p 26065 df-q1p 26066 df-r1p 26067 df-ig1p 26068 df-minply 33734 |
| This theorem is referenced by: minplyelirng 33749 |
| Copyright terms: Public domain | W3C validator |