| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minplynzm1p | Structured version Visualization version GIF version | ||
| Description: If a minimal polynomial is nonzero, then it is monic. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| minplynzm1p.b | ⊢ 𝐵 = (Base‘𝐸) |
| minplynzm1p.z | ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) |
| minplynzm1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
| minplynzm1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| minplynzm1p.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| minplynzm1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| minplynzm1p.1 | ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) |
| minplynzm1p.u | ⊢ 𝑈 = (Monic1p‘(𝐸 ↾s 𝐹)) |
| Ref | Expression |
|---|---|
| minplynzm1p | ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
| 2 | eqid 2734 | . . 3 ⊢ (Poly1‘(𝐸 ↾s 𝐹)) = (Poly1‘(𝐸 ↾s 𝐹)) | |
| 3 | minplynzm1p.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 4 | minplynzm1p.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 5 | minplynzm1p.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 6 | minplynzm1p.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 7 | eqid 2734 | . . 3 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 8 | eqid 2734 | . . 3 ⊢ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} | |
| 9 | eqid 2734 | . . 3 ⊢ (RSpan‘(Poly1‘(𝐸 ↾s 𝐹))) = (RSpan‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 10 | eqid 2734 | . . 3 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 11 | minplynzm1p.m | . . 3 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplyval 33676 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) |
| 13 | eqid 2734 | . . . . . 6 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
| 14 | 13 | sdrgdrng 20758 | . . . . 5 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 15 | 5, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 16 | 4 | fldcrngd 20709 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 17 | sdrgsubrg 20759 | . . . . . 6 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 18 | 5, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 19 | 1, 2, 3, 16, 18, 6, 7, 8 | ply1annidl 33673 | . . . 4 ⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 20 | 12 | sneqd 4618 | . . . . . . 7 ⊢ (𝜑 → {(𝑀‘𝐴)} = {((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})}) |
| 21 | 20 | fveq2d 6889 | . . . . . 6 ⊢ (𝜑 → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) = ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ply1annig1p 33675 | . . . . . 6 ⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} = ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 23 | 21, 22 | eqtr4d 2772 | . . . . 5 ⊢ (𝜑 → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) |
| 24 | 15 | drngringd 20704 | . . . . . . 7 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) |
| 25 | 2 | ply1ring 22196 | . . . . . . 7 ⊢ ((𝐸 ↾s 𝐹) ∈ Ring → (Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring) |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring) |
| 27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplycl 33677 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 28 | minplynzm1p.1 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) | |
| 29 | eqid 2734 | . . . . . . . 8 ⊢ (Poly1‘𝐸) = (Poly1‘𝐸) | |
| 30 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘(Poly1‘(𝐸 ↾s 𝐹))) = (Base‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 31 | minplynzm1p.z | . . . . . . . 8 ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) | |
| 32 | 29, 13, 2, 30, 18, 31 | ressply10g 33518 | . . . . . . 7 ⊢ (𝜑 → 𝑍 = (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 33 | 28, 32 | neeqtrd 3000 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ≠ (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 34 | eqid 2734 | . . . . . . 7 ⊢ (0g‘(Poly1‘(𝐸 ↾s 𝐹))) = (0g‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 35 | 30, 34, 9 | pidlnz 33330 | . . . . . 6 ⊢ (((Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ (𝑀‘𝐴) ≠ (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 36 | 26, 27, 33, 35 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 37 | 23, 36 | eqnetrrd 2999 | . . . 4 ⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 38 | eqid 2734 | . . . . 5 ⊢ (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) = (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 39 | eqid 2734 | . . . . 5 ⊢ (deg1‘(𝐸 ↾s 𝐹)) = (deg1‘(𝐸 ↾s 𝐹)) | |
| 40 | minplynzm1p.u | . . . . 5 ⊢ 𝑈 = (Monic1p‘(𝐸 ↾s 𝐹)) | |
| 41 | 2, 10, 34, 38, 39, 40 | ig1pval3 26152 | . . . 4 ⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) → (((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∧ ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈 ∧ ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) = inf(((deg1‘(𝐸 ↾s 𝐹)) “ ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∖ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))})), ℝ, < ))) |
| 42 | 15, 19, 37, 41 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∧ ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈 ∧ ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) = inf(((deg1‘(𝐸 ↾s 𝐹)) “ ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∖ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))})), ℝ, < ))) |
| 43 | 42 | simp2d 1143 | . 2 ⊢ (𝜑 → ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈) |
| 44 | 12, 43 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {crab 3419 ∖ cdif 3928 {csn 4606 dom cdm 5665 “ cima 5668 ‘cfv 6540 (class class class)co 7412 infcinf 9462 ℝcr 11135 < clt 11276 Basecbs 17228 ↾s cress 17251 0gc0g 17454 Ringcrg 20197 SubRingcsubrg 20536 DivRingcdr 20696 Fieldcfield 20697 SubDRingcsdrg 20754 LIdealclidl 21177 RSpancrsp 21178 Poly1cpl1 22125 evalSub1 ces1 22264 deg1cdg1 26028 Monic1pcmn1 26100 idlGen1pcig1p 26104 minPoly cminply 33670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-ofr 7679 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9383 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-fz 13529 df-fzo 13676 df-seq 14024 df-hash 14351 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-starv 17287 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-unif 17295 df-hom 17296 df-cco 17297 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-mhm 18764 df-submnd 18765 df-grp 18922 df-minusg 18923 df-sbg 18924 df-mulg 19054 df-subg 19109 df-ghm 19199 df-cntz 19303 df-cmn 19767 df-abl 19768 df-mgp 20105 df-rng 20117 df-ur 20146 df-srg 20151 df-ring 20199 df-cring 20200 df-oppr 20301 df-dvdsr 20324 df-unit 20325 df-invr 20355 df-rhm 20439 df-subrng 20513 df-subrg 20537 df-rlreg 20661 df-drng 20698 df-field 20699 df-sdrg 20755 df-lmod 20827 df-lss 20897 df-lsp 20937 df-sra 21139 df-rgmod 21140 df-lidl 21179 df-rsp 21180 df-cnfld 21326 df-assa 21826 df-asp 21827 df-ascl 21828 df-psr 21882 df-mvr 21883 df-mpl 21884 df-opsr 21886 df-evls 22045 df-evl 22046 df-psr1 22128 df-vr1 22129 df-ply1 22130 df-coe1 22131 df-evls1 22266 df-evl1 22267 df-mdeg 26029 df-deg1 26030 df-mon1 26105 df-uc1p 26106 df-q1p 26107 df-r1p 26108 df-ig1p 26109 df-minply 33671 |
| This theorem is referenced by: minplyelirng 33686 |
| Copyright terms: Public domain | W3C validator |