| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minplynzm1p | Structured version Visualization version GIF version | ||
| Description: If a minimal polynomial is nonzero, then it is monic. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| minplynzm1p.b | ⊢ 𝐵 = (Base‘𝐸) |
| minplynzm1p.z | ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) |
| minplynzm1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
| minplynzm1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| minplynzm1p.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| minplynzm1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| minplynzm1p.1 | ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) |
| minplynzm1p.u | ⊢ 𝑈 = (Monic1p‘(𝐸 ↾s 𝐹)) |
| Ref | Expression |
|---|---|
| minplynzm1p | ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
| 2 | eqid 2730 | . . 3 ⊢ (Poly1‘(𝐸 ↾s 𝐹)) = (Poly1‘(𝐸 ↾s 𝐹)) | |
| 3 | minplynzm1p.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 4 | minplynzm1p.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 5 | minplynzm1p.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 6 | minplynzm1p.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 7 | eqid 2730 | . . 3 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 8 | eqid 2730 | . . 3 ⊢ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} | |
| 9 | eqid 2730 | . . 3 ⊢ (RSpan‘(Poly1‘(𝐸 ↾s 𝐹))) = (RSpan‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 10 | eqid 2730 | . . 3 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 11 | minplynzm1p.m | . . 3 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplyval 33703 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) |
| 13 | eqid 2730 | . . . . . 6 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
| 14 | 13 | sdrgdrng 20705 | . . . . 5 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 15 | 5, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 16 | 4 | fldcrngd 20657 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 17 | sdrgsubrg 20706 | . . . . . 6 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 18 | 5, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 19 | 1, 2, 3, 16, 18, 6, 7, 8 | ply1annidl 33700 | . . . 4 ⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 20 | 12 | sneqd 4609 | . . . . . . 7 ⊢ (𝜑 → {(𝑀‘𝐴)} = {((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})}) |
| 21 | 20 | fveq2d 6869 | . . . . . 6 ⊢ (𝜑 → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) = ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ply1annig1p 33702 | . . . . . 6 ⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} = ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})})) |
| 23 | 21, 22 | eqtr4d 2768 | . . . . 5 ⊢ (𝜑 → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) |
| 24 | 15 | drngringd 20652 | . . . . . . 7 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) |
| 25 | 2 | ply1ring 22138 | . . . . . . 7 ⊢ ((𝐸 ↾s 𝐹) ∈ Ring → (Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring) |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring) |
| 27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplycl 33704 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 28 | minplynzm1p.1 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) | |
| 29 | eqid 2730 | . . . . . . . 8 ⊢ (Poly1‘𝐸) = (Poly1‘𝐸) | |
| 30 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘(Poly1‘(𝐸 ↾s 𝐹))) = (Base‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 31 | minplynzm1p.z | . . . . . . . 8 ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) | |
| 32 | 29, 13, 2, 30, 18, 31 | ressply10g 33544 | . . . . . . 7 ⊢ (𝜑 → 𝑍 = (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 33 | 28, 32 | neeqtrd 2996 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ≠ (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 34 | eqid 2730 | . . . . . . 7 ⊢ (0g‘(Poly1‘(𝐸 ↾s 𝐹))) = (0g‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 35 | 30, 34, 9 | pidlnz 33355 | . . . . . 6 ⊢ (((Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ (𝑀‘𝐴) ≠ (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 36 | 26, 27, 33, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((RSpan‘(Poly1‘(𝐸 ↾s 𝐹)))‘{(𝑀‘𝐴)}) ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 37 | 23, 36 | eqnetrrd 2995 | . . . 4 ⊢ (𝜑 → {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) |
| 38 | eqid 2730 | . . . . 5 ⊢ (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) = (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) | |
| 39 | eqid 2730 | . . . . 5 ⊢ (deg1‘(𝐸 ↾s 𝐹)) = (deg1‘(𝐸 ↾s 𝐹)) | |
| 40 | minplynzm1p.u | . . . . 5 ⊢ 𝑈 = (Monic1p‘(𝐸 ↾s 𝐹)) | |
| 41 | 2, 10, 34, 38, 39, 40 | ig1pval3 26090 | . . . 4 ⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∈ (LIdeal‘(Poly1‘(𝐸 ↾s 𝐹))) ∧ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ≠ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))}) → (((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∧ ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈 ∧ ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) = inf(((deg1‘(𝐸 ↾s 𝐹)) “ ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∖ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))})), ℝ, < ))) |
| 42 | 15, 19, 37, 41 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∧ ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈 ∧ ((deg1‘(𝐸 ↾s 𝐹))‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)})) = inf(((deg1‘(𝐸 ↾s 𝐹)) “ ({𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)} ∖ {(0g‘(Poly1‘(𝐸 ↾s 𝐹)))})), ℝ, < ))) |
| 43 | 42 | simp2d 1143 | . 2 ⊢ (𝜑 → ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝐴) = (0g‘𝐸)}) ∈ 𝑈) |
| 44 | 12, 43 | eqeltrd 2829 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 {crab 3411 ∖ cdif 3919 {csn 4597 dom cdm 5646 “ cima 5649 ‘cfv 6519 (class class class)co 7394 infcinf 9410 ℝcr 11085 < clt 11226 Basecbs 17185 ↾s cress 17206 0gc0g 17408 Ringcrg 20148 SubRingcsubrg 20484 DivRingcdr 20644 Fieldcfield 20645 SubDRingcsdrg 20701 LIdealclidl 21122 RSpancrsp 21123 Poly1cpl1 22067 evalSub1 ces1 22206 deg1cdg1 25966 Monic1pcmn1 26038 idlGen1pcig1p 26042 minPoly cminply 33697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-ofr 7661 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-sup 9411 df-inf 9412 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-fzo 13629 df-seq 13977 df-hash 14306 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-srg 20102 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-drng 20646 df-field 20647 df-sdrg 20702 df-lmod 20774 df-lss 20844 df-lsp 20884 df-sra 21086 df-rgmod 21087 df-lidl 21124 df-rsp 21125 df-cnfld 21271 df-assa 21768 df-asp 21769 df-ascl 21770 df-psr 21824 df-mvr 21825 df-mpl 21826 df-opsr 21828 df-evls 21987 df-evl 21988 df-psr1 22070 df-vr1 22071 df-ply1 22072 df-coe1 22073 df-evls1 22208 df-evl1 22209 df-mdeg 25967 df-deg1 25968 df-mon1 26043 df-uc1p 26044 df-q1p 26045 df-r1p 26046 df-ig1p 26047 df-minply 33698 |
| This theorem is referenced by: minplyelirng 33713 |
| Copyright terms: Public domain | W3C validator |