![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > minplymindeg | Structured version Visualization version GIF version |
Description: The minimal polynomial of 𝐴 is minimal among the nonzero annihilators of 𝐴 with regard to degree. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
Ref | Expression |
---|---|
ply1annig1p.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
ply1annig1p.p | ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
ply1annig1p.b | ⊢ 𝐵 = (Base‘𝐸) |
ply1annig1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
ply1annig1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
ply1annig1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
minplymindeg.0 | ⊢ 0 = (0g‘𝐸) |
minplymindeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
minplymindeg.d | ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) |
minplymindeg.z | ⊢ 𝑍 = (0g‘𝑃) |
minplymindeg.u | ⊢ 𝑈 = (Base‘𝑃) |
minplymindeg.1 | ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) |
minplymindeg.h | ⊢ (𝜑 → 𝐻 ∈ 𝑈) |
minplymindeg.2 | ⊢ (𝜑 → 𝐻 ≠ 𝑍) |
Ref | Expression |
---|---|
minplymindeg | ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1annig1p.o | . . . 4 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
2 | ply1annig1p.p | . . . 4 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | |
3 | ply1annig1p.b | . . . 4 ⊢ 𝐵 = (Base‘𝐸) | |
4 | ply1annig1p.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Field) | |
5 | ply1annig1p.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
6 | ply1annig1p.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
7 | minplymindeg.0 | . . . 4 ⊢ 0 = (0g‘𝐸) | |
8 | eqid 2733 | . . . 4 ⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
9 | eqid 2733 | . . . 4 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
10 | eqid 2733 | . . . 4 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
11 | minplymindeg.m | . . . 4 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplyval 33676 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) |
13 | 12 | fveq2d 6905 | . 2 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = (𝐷‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }))) |
14 | minplymindeg.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
15 | eqid 2733 | . . . . 5 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
16 | 15 | sdrgdrng 20789 | . . . 4 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
17 | 5, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
18 | 4 | fldcrngd 20740 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ CRing) |
19 | sdrgsubrg 20790 | . . . . 5 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
20 | 5, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
21 | 1, 2, 3, 18, 20, 6, 7, 8 | ply1annidl 33673 | . . 3 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃)) |
22 | minplymindeg.d | . . 3 ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) | |
23 | minplymindeg.z | . . 3 ⊢ 𝑍 = (0g‘𝑃) | |
24 | fveq2 6901 | . . . . . 6 ⊢ (𝑞 = 𝐻 → (𝑂‘𝑞) = (𝑂‘𝐻)) | |
25 | 24 | fveq1d 6903 | . . . . 5 ⊢ (𝑞 = 𝐻 → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘𝐻)‘𝐴)) |
26 | 25 | eqeq1d 2735 | . . . 4 ⊢ (𝑞 = 𝐻 → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘𝐻)‘𝐴) = 0 )) |
27 | minplymindeg.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑈) | |
28 | 1, 2, 14, 18, 20 | evls1dm 33530 | . . . . 5 ⊢ (𝜑 → dom 𝑂 = 𝑈) |
29 | 27, 28 | eleqtrrd 2840 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ dom 𝑂) |
30 | minplymindeg.1 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) | |
31 | 26, 29, 30 | elrabd 3697 | . . 3 ⊢ (𝜑 → 𝐻 ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
32 | minplymindeg.2 | . . 3 ⊢ (𝜑 → 𝐻 ≠ 𝑍) | |
33 | 2, 10, 14, 17, 21, 22, 23, 31, 32 | ig1pmindeg 33565 | . 2 ⊢ (𝜑 → (𝐷‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) ≤ (𝐷‘𝐻)) |
34 | 13, 33 | eqbrtrd 5171 | 1 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1535 ∈ wcel 2104 ≠ wne 2936 {crab 3432 class class class wbr 5149 dom cdm 5683 ‘cfv 6558 (class class class)co 7425 ≤ cle 11287 Basecbs 17234 ↾s cress 17263 0gc0g 17475 SubRingcsubrg 20571 DivRingcdr 20727 Fieldcfield 20728 SubDRingcsdrg 20785 RSpancrsp 21216 Poly1cpl1 22175 evalSub1 ces1 22314 deg1cdg1 26089 idlGen1pcig1p 26165 minPoly cminply 33670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4915 df-int 4954 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-isom 6567 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-of 7691 df-ofr 7692 df-om 7881 df-1st 8007 df-2nd 8008 df-supp 8179 df-tpos 8244 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-1o 8499 df-2o 8500 df-er 8738 df-map 8861 df-pm 8862 df-ixp 8931 df-en 8979 df-dom 8980 df-sdom 8981 df-fin 8982 df-fsupp 9394 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11485 df-neg 11486 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-7 12325 df-8 12326 df-9 12327 df-n0 12518 df-z 12605 df-dec 12725 df-uz 12870 df-fz 13538 df-fzo 13682 df-seq 14029 df-hash 14356 df-struct 17170 df-sets 17187 df-slot 17205 df-ndx 17217 df-base 17235 df-ress 17264 df-plusg 17300 df-mulr 17301 df-starv 17302 df-sca 17303 df-vsca 17304 df-ip 17305 df-tset 17306 df-ple 17307 df-ds 17309 df-unif 17310 df-hom 17311 df-cco 17312 df-0g 17477 df-gsum 17478 df-prds 17483 df-pws 17485 df-mre 17620 df-mrc 17621 df-acs 17623 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18794 df-submnd 18795 df-grp 18952 df-minusg 18953 df-sbg 18954 df-mulg 19084 df-subg 19139 df-ghm 19229 df-cntz 19333 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20156 df-ur 20185 df-srg 20190 df-ring 20238 df-cring 20239 df-oppr 20336 df-dvdsr 20359 df-unit 20360 df-invr 20390 df-rhm 20474 df-subrng 20548 df-subrg 20573 df-rlreg 20692 df-drng 20729 df-field 20730 df-sdrg 20786 df-lmod 20858 df-lss 20929 df-lsp 20969 df-sra 21171 df-rgmod 21172 df-lidl 21217 df-cnfld 21364 df-assa 21872 df-asp 21873 df-ascl 21874 df-psr 21928 df-mvr 21929 df-mpl 21930 df-opsr 21932 df-evls 22097 df-evl 22098 df-psr1 22178 df-vr1 22179 df-ply1 22180 df-coe1 22181 df-evls1 22316 df-evl1 22317 df-mdeg 26090 df-deg1 26091 df-mon1 26166 df-uc1p 26167 df-ig1p 26170 df-minply 33671 |
This theorem is referenced by: rtelextdg2lem 33695 |
Copyright terms: Public domain | W3C validator |