| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minplymindeg | Structured version Visualization version GIF version | ||
| Description: The minimal polynomial of 𝐴 is minimal among the nonzero annihilators of 𝐴 with regard to degree. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| Ref | Expression |
|---|---|
| ply1annig1p.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| ply1annig1p.p | ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| ply1annig1p.b | ⊢ 𝐵 = (Base‘𝐸) |
| ply1annig1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
| ply1annig1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| ply1annig1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| minplymindeg.0 | ⊢ 0 = (0g‘𝐸) |
| minplymindeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| minplymindeg.d | ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) |
| minplymindeg.z | ⊢ 𝑍 = (0g‘𝑃) |
| minplymindeg.u | ⊢ 𝑈 = (Base‘𝑃) |
| minplymindeg.1 | ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) |
| minplymindeg.h | ⊢ (𝜑 → 𝐻 ∈ 𝑈) |
| minplymindeg.2 | ⊢ (𝜑 → 𝐻 ≠ 𝑍) |
| Ref | Expression |
|---|---|
| minplymindeg | ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1annig1p.o | . . . 4 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 2 | ply1annig1p.p | . . . 4 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | |
| 3 | ply1annig1p.b | . . . 4 ⊢ 𝐵 = (Base‘𝐸) | |
| 4 | ply1annig1p.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 5 | ply1annig1p.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 6 | ply1annig1p.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 7 | minplymindeg.0 | . . . 4 ⊢ 0 = (0g‘𝐸) | |
| 8 | eqid 2730 | . . . 4 ⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
| 9 | eqid 2730 | . . . 4 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
| 10 | eqid 2730 | . . . 4 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 11 | minplymindeg.m | . . . 4 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplyval 33701 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) |
| 13 | 12 | fveq2d 6864 | . 2 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = (𝐷‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }))) |
| 14 | minplymindeg.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
| 15 | eqid 2730 | . . . . 5 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
| 16 | 15 | sdrgdrng 20705 | . . . 4 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 17 | 5, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 18 | 4 | fldcrngd 20657 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 19 | sdrgsubrg 20706 | . . . . 5 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 20 | 5, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 21 | 1, 2, 3, 18, 20, 6, 7, 8 | ply1annidl 33698 | . . 3 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃)) |
| 22 | minplymindeg.d | . . 3 ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) | |
| 23 | minplymindeg.z | . . 3 ⊢ 𝑍 = (0g‘𝑃) | |
| 24 | fveq2 6860 | . . . . . 6 ⊢ (𝑞 = 𝐻 → (𝑂‘𝑞) = (𝑂‘𝐻)) | |
| 25 | 24 | fveq1d 6862 | . . . . 5 ⊢ (𝑞 = 𝐻 → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘𝐻)‘𝐴)) |
| 26 | 25 | eqeq1d 2732 | . . . 4 ⊢ (𝑞 = 𝐻 → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘𝐻)‘𝐴) = 0 )) |
| 27 | minplymindeg.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑈) | |
| 28 | 1, 2, 14, 18, 20 | evls1dm 33536 | . . . . 5 ⊢ (𝜑 → dom 𝑂 = 𝑈) |
| 29 | 27, 28 | eleqtrrd 2832 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ dom 𝑂) |
| 30 | minplymindeg.1 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) | |
| 31 | 26, 29, 30 | elrabd 3663 | . . 3 ⊢ (𝜑 → 𝐻 ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 32 | minplymindeg.2 | . . 3 ⊢ (𝜑 → 𝐻 ≠ 𝑍) | |
| 33 | 2, 10, 14, 17, 21, 22, 23, 31, 32 | ig1pmindeg 33573 | . 2 ⊢ (𝜑 → (𝐷‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) ≤ (𝐷‘𝐻)) |
| 34 | 13, 33 | eqbrtrd 5131 | 1 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 class class class wbr 5109 dom cdm 5640 ‘cfv 6513 (class class class)co 7389 ≤ cle 11215 Basecbs 17185 ↾s cress 17206 0gc0g 17408 SubRingcsubrg 20484 DivRingcdr 20644 Fieldcfield 20645 SubDRingcsdrg 20701 RSpancrsp 21123 Poly1cpl1 22067 evalSub1 ces1 22206 deg1cdg1 25965 idlGen1pcig1p 26041 minPoly cminply 33695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-ofr 7656 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-fzo 13622 df-seq 13973 df-hash 14302 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-srg 20102 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-drng 20646 df-field 20647 df-sdrg 20702 df-lmod 20774 df-lss 20844 df-lsp 20884 df-sra 21086 df-rgmod 21087 df-lidl 21124 df-cnfld 21271 df-assa 21768 df-asp 21769 df-ascl 21770 df-psr 21824 df-mvr 21825 df-mpl 21826 df-opsr 21828 df-evls 21987 df-evl 21988 df-psr1 22070 df-vr1 22071 df-ply1 22072 df-coe1 22073 df-evls1 22208 df-evl1 22209 df-mdeg 25966 df-deg1 25967 df-mon1 26042 df-uc1p 26043 df-ig1p 26046 df-minply 33696 |
| This theorem is referenced by: rtelextdg2lem 33722 |
| Copyright terms: Public domain | W3C validator |