![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > minplymindeg | Structured version Visualization version GIF version |
Description: The minimal polynomial of 𝐴 is minimal among the nonzero annihilators of 𝐴 with regard to degree. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
Ref | Expression |
---|---|
ply1annig1p.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
ply1annig1p.p | ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
ply1annig1p.b | ⊢ 𝐵 = (Base‘𝐸) |
ply1annig1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
ply1annig1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
ply1annig1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
minplymindeg.0 | ⊢ 0 = (0g‘𝐸) |
minplymindeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
minplymindeg.d | ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) |
minplymindeg.z | ⊢ 𝑍 = (0g‘𝑃) |
minplymindeg.u | ⊢ 𝑈 = (Base‘𝑃) |
minplymindeg.1 | ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) |
minplymindeg.h | ⊢ (𝜑 → 𝐻 ∈ 𝑈) |
minplymindeg.2 | ⊢ (𝜑 → 𝐻 ≠ 𝑍) |
Ref | Expression |
---|---|
minplymindeg | ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1annig1p.o | . . . 4 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
2 | ply1annig1p.p | . . . 4 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | |
3 | ply1annig1p.b | . . . 4 ⊢ 𝐵 = (Base‘𝐸) | |
4 | ply1annig1p.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Field) | |
5 | ply1annig1p.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
6 | ply1annig1p.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
7 | minplymindeg.0 | . . . 4 ⊢ 0 = (0g‘𝐸) | |
8 | eqid 2740 | . . . 4 ⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
9 | eqid 2740 | . . . 4 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
10 | eqid 2740 | . . . 4 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
11 | minplymindeg.m | . . . 4 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplyval 33690 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) |
13 | 12 | fveq2d 6919 | . 2 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = (𝐷‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }))) |
14 | minplymindeg.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
15 | eqid 2740 | . . . . 5 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
16 | 15 | sdrgdrng 20807 | . . . 4 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
17 | 5, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
18 | 4 | fldcrngd 20758 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ CRing) |
19 | sdrgsubrg 20808 | . . . . 5 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
20 | 5, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
21 | 1, 2, 3, 18, 20, 6, 7, 8 | ply1annidl 33687 | . . 3 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃)) |
22 | minplymindeg.d | . . 3 ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) | |
23 | minplymindeg.z | . . 3 ⊢ 𝑍 = (0g‘𝑃) | |
24 | fveq2 6915 | . . . . . 6 ⊢ (𝑞 = 𝐻 → (𝑂‘𝑞) = (𝑂‘𝐻)) | |
25 | 24 | fveq1d 6917 | . . . . 5 ⊢ (𝑞 = 𝐻 → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘𝐻)‘𝐴)) |
26 | 25 | eqeq1d 2742 | . . . 4 ⊢ (𝑞 = 𝐻 → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘𝐻)‘𝐴) = 0 )) |
27 | minplymindeg.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑈) | |
28 | 1, 2, 14, 18, 20 | evls1dm 33544 | . . . . 5 ⊢ (𝜑 → dom 𝑂 = 𝑈) |
29 | 27, 28 | eleqtrrd 2847 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ dom 𝑂) |
30 | minplymindeg.1 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) | |
31 | 26, 29, 30 | elrabd 3710 | . . 3 ⊢ (𝜑 → 𝐻 ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
32 | minplymindeg.2 | . . 3 ⊢ (𝜑 → 𝐻 ≠ 𝑍) | |
33 | 2, 10, 14, 17, 21, 22, 23, 31, 32 | ig1pmindeg 33579 | . 2 ⊢ (𝜑 → (𝐷‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) ≤ (𝐷‘𝐻)) |
34 | 13, 33 | eqbrtrd 5188 | 1 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 class class class wbr 5166 dom cdm 5695 ‘cfv 6568 (class class class)co 7443 ≤ cle 11319 Basecbs 17252 ↾s cress 17281 0gc0g 17493 SubRingcsubrg 20589 DivRingcdr 20745 Fieldcfield 20746 SubDRingcsdrg 20803 RSpancrsp 21234 Poly1cpl1 22191 evalSub1 ces1 22330 deg1cdg1 26105 idlGen1pcig1p 26181 minPoly cminply 33684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 ax-addf 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-of 7708 df-ofr 7709 df-om 7898 df-1st 8024 df-2nd 8025 df-supp 8196 df-tpos 8261 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-er 8757 df-map 8880 df-pm 8881 df-ixp 8950 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-fsupp 9426 df-sup 9505 df-inf 9506 df-oi 9573 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-uz 12898 df-fz 13562 df-fzo 13706 df-seq 14047 df-hash 14374 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-starv 17320 df-sca 17321 df-vsca 17322 df-ip 17323 df-tset 17324 df-ple 17325 df-ds 17327 df-unif 17328 df-hom 17329 df-cco 17330 df-0g 17495 df-gsum 17496 df-prds 17501 df-pws 17503 df-mre 17638 df-mrc 17639 df-acs 17641 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-mhm 18812 df-submnd 18813 df-grp 18970 df-minusg 18971 df-sbg 18972 df-mulg 19102 df-subg 19157 df-ghm 19247 df-cntz 19351 df-cmn 19818 df-abl 19819 df-mgp 20156 df-rng 20174 df-ur 20203 df-srg 20208 df-ring 20256 df-cring 20257 df-oppr 20354 df-dvdsr 20377 df-unit 20378 df-invr 20408 df-rhm 20492 df-subrng 20566 df-subrg 20591 df-rlreg 20710 df-drng 20747 df-field 20748 df-sdrg 20804 df-lmod 20876 df-lss 20947 df-lsp 20987 df-sra 21189 df-rgmod 21190 df-lidl 21235 df-cnfld 21382 df-assa 21890 df-asp 21891 df-ascl 21892 df-psr 21945 df-mvr 21946 df-mpl 21947 df-opsr 21949 df-evls 22114 df-evl 22115 df-psr1 22194 df-vr1 22195 df-ply1 22196 df-coe1 22197 df-evls1 22332 df-evl1 22333 df-mdeg 26106 df-deg1 26107 df-mon1 26182 df-uc1p 26183 df-ig1p 26186 df-minply 33685 |
This theorem is referenced by: rtelextdg2lem 33709 |
Copyright terms: Public domain | W3C validator |