![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > minplymindeg | Structured version Visualization version GIF version |
Description: The minimal polynomial of 𝐴 is minimal among the nonzero annihilators of 𝐴 with regard to degree. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
Ref | Expression |
---|---|
ply1annig1p.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
ply1annig1p.p | ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
ply1annig1p.b | ⊢ 𝐵 = (Base‘𝐸) |
ply1annig1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
ply1annig1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
ply1annig1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
minplymindeg.0 | ⊢ 0 = (0g‘𝐸) |
minplymindeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
minplymindeg.d | ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) |
minplymindeg.z | ⊢ 𝑍 = (0g‘𝑃) |
minplymindeg.u | ⊢ 𝑈 = (Base‘𝑃) |
minplymindeg.1 | ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) |
minplymindeg.h | ⊢ (𝜑 → 𝐻 ∈ 𝑈) |
minplymindeg.2 | ⊢ (𝜑 → 𝐻 ≠ 𝑍) |
Ref | Expression |
---|---|
minplymindeg | ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1annig1p.o | . . . 4 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
2 | ply1annig1p.p | . . . 4 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | |
3 | ply1annig1p.b | . . . 4 ⊢ 𝐵 = (Base‘𝐸) | |
4 | ply1annig1p.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Field) | |
5 | ply1annig1p.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
6 | ply1annig1p.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
7 | minplymindeg.0 | . . . 4 ⊢ 0 = (0g‘𝐸) | |
8 | eqid 2726 | . . . 4 ⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
9 | eqid 2726 | . . . 4 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
10 | eqid 2726 | . . . 4 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
11 | minplymindeg.m | . . . 4 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplyval 33577 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) |
13 | 12 | fveq2d 6894 | . 2 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = (𝐷‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }))) |
14 | minplymindeg.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
15 | eqid 2726 | . . . . 5 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
16 | 15 | sdrgdrng 20762 | . . . 4 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
17 | 5, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
18 | 4 | fldcrngd 20713 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ CRing) |
19 | sdrgsubrg 20763 | . . . . 5 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
20 | 5, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
21 | 1, 2, 3, 18, 20, 6, 7, 8 | ply1annidl 33574 | . . 3 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃)) |
22 | minplymindeg.d | . . 3 ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) | |
23 | minplymindeg.z | . . 3 ⊢ 𝑍 = (0g‘𝑃) | |
24 | fveq2 6890 | . . . . . 6 ⊢ (𝑞 = 𝐻 → (𝑂‘𝑞) = (𝑂‘𝐻)) | |
25 | 24 | fveq1d 6892 | . . . . 5 ⊢ (𝑞 = 𝐻 → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘𝐻)‘𝐴)) |
26 | 25 | eqeq1d 2728 | . . . 4 ⊢ (𝑞 = 𝐻 → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘𝐻)‘𝐴) = 0 )) |
27 | minplymindeg.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑈) | |
28 | 1, 2, 14, 18, 20 | evls1dm 33437 | . . . . 5 ⊢ (𝜑 → dom 𝑂 = 𝑈) |
29 | 27, 28 | eleqtrrd 2829 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ dom 𝑂) |
30 | minplymindeg.1 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) | |
31 | 26, 29, 30 | elrabd 3682 | . . 3 ⊢ (𝜑 → 𝐻 ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
32 | minplymindeg.2 | . . 3 ⊢ (𝜑 → 𝐻 ≠ 𝑍) | |
33 | 2, 10, 14, 17, 21, 22, 23, 31, 32 | ig1pmindeg 33472 | . 2 ⊢ (𝜑 → (𝐷‘((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) ≤ (𝐷‘𝐻)) |
34 | 13, 33 | eqbrtrd 5165 | 1 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 {crab 3419 class class class wbr 5143 dom cdm 5672 ‘cfv 6543 (class class class)co 7413 ≤ cle 11287 Basecbs 17205 ↾s cress 17234 0gc0g 17446 SubRingcsubrg 20544 DivRingcdr 20700 Fieldcfield 20701 SubDRingcsdrg 20758 RSpancrsp 21189 Poly1cpl1 22159 evalSub1 ces1 22298 deg1cdg1 26072 idlGen1pcig1p 26151 minPoly cminply 33571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7866 df-1st 7992 df-2nd 7993 df-supp 8164 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8723 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9396 df-sup 9475 df-inf 9476 df-oi 9543 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-2 12318 df-3 12319 df-4 12320 df-5 12321 df-6 12322 df-7 12323 df-8 12324 df-9 12325 df-n0 12516 df-z 12602 df-dec 12721 df-uz 12866 df-fz 13530 df-fzo 13673 df-seq 14013 df-hash 14340 df-struct 17141 df-sets 17158 df-slot 17176 df-ndx 17188 df-base 17206 df-ress 17235 df-plusg 17271 df-mulr 17272 df-starv 17273 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-unif 17281 df-hom 17282 df-cco 17283 df-0g 17448 df-gsum 17449 df-prds 17454 df-pws 17456 df-mre 17591 df-mrc 17592 df-acs 17594 df-mgm 18625 df-sgrp 18704 df-mnd 18720 df-mhm 18765 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-mulg 19055 df-subg 19110 df-ghm 19200 df-cntz 19304 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20129 df-ur 20158 df-srg 20163 df-ring 20211 df-cring 20212 df-oppr 20309 df-dvdsr 20332 df-unit 20333 df-invr 20363 df-rhm 20447 df-subrng 20521 df-subrg 20546 df-rlreg 20665 df-drng 20702 df-field 20703 df-sdrg 20759 df-lmod 20831 df-lss 20902 df-lsp 20942 df-sra 21144 df-rgmod 21145 df-lidl 21190 df-cnfld 21337 df-assa 21844 df-asp 21845 df-ascl 21846 df-psr 21899 df-mvr 21900 df-mpl 21901 df-opsr 21903 df-evls 22080 df-evl 22081 df-psr1 22162 df-vr1 22163 df-ply1 22164 df-coe1 22165 df-evls1 22300 df-evl1 22301 df-mdeg 26073 df-deg1 26074 df-mon1 26152 df-uc1p 26153 df-ig1p 26156 df-minply 33572 |
This theorem is referenced by: rtelextdg2lem 33596 |
Copyright terms: Public domain | W3C validator |