Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrxmetfi | Structured version Visualization version GIF version |
Description: Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rrxmetfi.1 | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
Ref | Expression |
---|---|
rrxmetfi | ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
2 | rrxmetfi.1 | . . 3 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
3 | 1, 2 | rrxmet 24600 | . 2 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘{ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0})) |
4 | eqid 2733 | . . . . 5 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
5 | eqid 2733 | . . . . 5 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
6 | 4, 5 | rrxbase 24580 | . . . 4 ⊢ (𝐼 ∈ Fin → (Base‘(ℝ^‘𝐼)) = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0}) |
7 | id 22 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
8 | 7, 4, 5 | rrxbasefi 24602 | . . . 4 ⊢ (𝐼 ∈ Fin → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
9 | 6, 8 | eqtr3d 2775 | . . 3 ⊢ (𝐼 ∈ Fin → {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} = (ℝ ↑m 𝐼)) |
10 | 9 | fveq2d 6796 | . 2 ⊢ (𝐼 ∈ Fin → (Met‘{ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0}) = (Met‘(ℝ ↑m 𝐼))) |
11 | 3, 10 | eleqtrd 2836 | 1 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 {crab 3221 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 ↑m cmap 8635 Fincfn 8753 finSupp cfsupp 9156 ℝcr 10898 0cc0 10899 Basecbs 16940 distcds 16999 Metcmet 20611 ℝ^crrx 24575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-inf2 9427 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 ax-addf 10978 ax-mulf 10979 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-of 7553 df-om 7733 df-1st 7851 df-2nd 7852 df-supp 7998 df-tpos 8062 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fsupp 9157 df-sup 9229 df-oi 9297 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-rp 12759 df-ico 13113 df-fz 13268 df-fzo 13411 df-seq 13750 df-exp 13811 df-hash 14073 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-clim 15225 df-sum 15426 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-starv 17005 df-sca 17006 df-vsca 17007 df-ip 17008 df-tset 17009 df-ple 17010 df-ds 17012 df-unif 17013 df-hom 17014 df-cco 17015 df-0g 17180 df-gsum 17181 df-prds 17186 df-pws 17188 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-mhm 18458 df-grp 18608 df-minusg 18609 df-sbg 18610 df-subg 18780 df-ghm 18860 df-cntz 18951 df-cmn 19416 df-abl 19417 df-mgp 19749 df-ur 19766 df-ring 19813 df-cring 19814 df-oppr 19890 df-dvdsr 19911 df-unit 19912 df-invr 19942 df-dvr 19953 df-rnghom 19987 df-drng 20021 df-field 20022 df-subrg 20050 df-staf 20133 df-srng 20134 df-lmod 20153 df-lss 20222 df-sra 20462 df-rgmod 20463 df-met 20619 df-cnfld 20626 df-refld 20838 df-dsmm 20967 df-frlm 20982 df-nm 23766 df-tng 23768 df-tcph 24361 df-rrx 24577 |
This theorem is referenced by: qndenserrnbllem 43870 qndenserrnbl 43871 qndenserrnopnlem 43873 rrndsmet 43878 hoiqssbllem2 44197 hoiqssbl 44199 opnvonmbllem2 44207 rrxsphere 46134 |
Copyright terms: Public domain | W3C validator |