![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxmetfi | Structured version Visualization version GIF version |
Description: Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rrxmetfi.1 | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
Ref | Expression |
---|---|
rrxmetfi | ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
2 | rrxmetfi.1 | . . 3 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
3 | 1, 2 | rrxmet 25456 | . 2 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘{ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0})) |
4 | eqid 2735 | . . . . 5 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
5 | eqid 2735 | . . . . 5 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
6 | 4, 5 | rrxbase 25436 | . . . 4 ⊢ (𝐼 ∈ Fin → (Base‘(ℝ^‘𝐼)) = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0}) |
7 | id 22 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
8 | 7, 4, 5 | rrxbasefi 25458 | . . . 4 ⊢ (𝐼 ∈ Fin → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
9 | 6, 8 | eqtr3d 2777 | . . 3 ⊢ (𝐼 ∈ Fin → {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} = (ℝ ↑m 𝐼)) |
10 | 9 | fveq2d 6911 | . 2 ⊢ (𝐼 ∈ Fin → (Met‘{ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0}) = (Met‘(ℝ ↑m 𝐼))) |
11 | 3, 10 | eleqtrd 2841 | 1 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {crab 3433 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Fincfn 8984 finSupp cfsupp 9399 ℝcr 11152 0cc0 11153 Basecbs 17245 distcds 17307 Metcmet 21368 ℝ^crrx 25431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-ico 13390 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-drng 20748 df-field 20749 df-staf 20857 df-srng 20858 df-lmod 20877 df-lss 20948 df-sra 21190 df-rgmod 21191 df-met 21376 df-cnfld 21383 df-refld 21641 df-dsmm 21770 df-frlm 21785 df-nm 24611 df-tng 24613 df-tcph 25217 df-rrx 25433 |
This theorem is referenced by: qndenserrnbllem 46250 qndenserrnbl 46251 qndenserrnopnlem 46253 rrndsmet 46258 hoiqssbllem2 46579 hoiqssbl 46581 opnvonmbllem2 46589 rrxsphere 48598 |
Copyright terms: Public domain | W3C validator |