Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rgmoddim Structured version   Visualization version   GIF version

Theorem rgmoddim 31008
Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.)
Hypothesis
Ref Expression
rgmoddim.1 𝑉 = (ringLMod‘𝐹)
Assertion
Ref Expression
rgmoddim (𝐹 ∈ Field → (dim‘𝑉) = 1)

Proof of Theorem rgmoddim
StepHypRef Expression
1 isfld 19511 . . . . 5 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
21simplbi 500 . . . 4 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
3 eqid 2821 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
43ressid 16559 . . . . 5 (𝐹 ∈ Field → (𝐹s (Base‘𝐹)) = 𝐹)
54, 2eqeltrd 2913 . . . 4 (𝐹 ∈ Field → (𝐹s (Base‘𝐹)) ∈ DivRing)
6 drngring 19509 . . . . 5 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
73subrgid 19537 . . . . 5 (𝐹 ∈ Ring → (Base‘𝐹) ∈ (SubRing‘𝐹))
82, 6, 73syl 18 . . . 4 (𝐹 ∈ Field → (Base‘𝐹) ∈ (SubRing‘𝐹))
9 rgmoddim.1 . . . . . 6 𝑉 = (ringLMod‘𝐹)
10 rlmval 19963 . . . . . 6 (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹))
119, 10eqtri 2844 . . . . 5 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))
12 eqid 2821 . . . . 5 (𝐹s (Base‘𝐹)) = (𝐹s (Base‘𝐹))
1311, 12sralvec 30990 . . . 4 ((𝐹 ∈ DivRing ∧ (𝐹s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐹)) → 𝑉 ∈ LVec)
142, 5, 8, 13syl3anc 1367 . . 3 (𝐹 ∈ Field → 𝑉 ∈ LVec)
152, 6syl 17 . . . . . . 7 (𝐹 ∈ Field → 𝐹 ∈ Ring)
16 ssidd 3990 . . . . . . 7 (𝐹 ∈ Field → (Base‘𝐹) ⊆ (Base‘𝐹))
1711, 3sraring 30987 . . . . . . 7 ((𝐹 ∈ Ring ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ Ring)
1815, 16, 17syl2anc 586 . . . . . 6 (𝐹 ∈ Field → 𝑉 ∈ Ring)
19 eqid 2821 . . . . . . 7 (Base‘𝑉) = (Base‘𝑉)
20 eqid 2821 . . . . . . 7 (1r𝑉) = (1r𝑉)
2119, 20ringidcl 19318 . . . . . 6 (𝑉 ∈ Ring → (1r𝑉) ∈ (Base‘𝑉))
2218, 21syl 17 . . . . 5 (𝐹 ∈ Field → (1r𝑉) ∈ (Base‘𝑉))
2311, 3sradrng 30988 . . . . . . 7 ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing)
242, 16, 23syl2anc 586 . . . . . 6 (𝐹 ∈ Field → 𝑉 ∈ DivRing)
25 eqid 2821 . . . . . . 7 (0g𝑉) = (0g𝑉)
2625, 20drngunz 19517 . . . . . 6 (𝑉 ∈ DivRing → (1r𝑉) ≠ (0g𝑉))
2724, 26syl 17 . . . . 5 (𝐹 ∈ Field → (1r𝑉) ≠ (0g𝑉))
2819, 25lindssn 30939 . . . . 5 ((𝑉 ∈ LVec ∧ (1r𝑉) ∈ (Base‘𝑉) ∧ (1r𝑉) ≠ (0g𝑉)) → {(1r𝑉)} ∈ (LIndS‘𝑉))
2914, 22, 27, 28syl3anc 1367 . . . 4 (𝐹 ∈ Field → {(1r𝑉)} ∈ (LIndS‘𝑉))
30 rspval 19965 . . . . . . . . 9 (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹))
319fveq2i 6673 . . . . . . . . 9 (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹))
3230, 31eqtr4i 2847 . . . . . . . 8 (RSpan‘𝐹) = (LSpan‘𝑉)
3332fveq1i 6671 . . . . . . 7 ((RSpan‘𝐹)‘{(1r𝐹)}) = ((LSpan‘𝑉)‘{(1r𝐹)})
34 eqid 2821 . . . . . . . 8 (RSpan‘𝐹) = (RSpan‘𝐹)
35 eqid 2821 . . . . . . . 8 (1r𝐹) = (1r𝐹)
3634, 3, 35rsp1 19997 . . . . . . 7 (𝐹 ∈ Ring → ((RSpan‘𝐹)‘{(1r𝐹)}) = (Base‘𝐹))
3733, 36syl5eqr 2870 . . . . . 6 (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r𝐹)}) = (Base‘𝐹))
382, 6, 373syl 18 . . . . 5 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝐹)}) = (Base‘𝐹))
3911a1i 11 . . . . . . . 8 (𝐹 ∈ Field → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)))
40 eqidd 2822 . . . . . . . 8 (𝐹 ∈ Field → (1r𝐹) = (1r𝐹))
4139, 40, 16sra1r 30986 . . . . . . 7 (𝐹 ∈ Field → (1r𝐹) = (1r𝑉))
4241sneqd 4579 . . . . . 6 (𝐹 ∈ Field → {(1r𝐹)} = {(1r𝑉)})
4342fveq2d 6674 . . . . 5 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝐹)}) = ((LSpan‘𝑉)‘{(1r𝑉)}))
4439, 16srabase 19950 . . . . 5 (𝐹 ∈ Field → (Base‘𝐹) = (Base‘𝑉))
4538, 43, 443eqtr3d 2864 . . . 4 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝑉)}) = (Base‘𝑉))
46 eqid 2821 . . . . 5 (LBasis‘𝑉) = (LBasis‘𝑉)
47 eqid 2821 . . . . 5 (LSpan‘𝑉) = (LSpan‘𝑉)
4819, 46, 47islbs4 20976 . . . 4 ({(1r𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r𝑉)}) = (Base‘𝑉)))
4929, 45, 48sylanbrc 585 . . 3 (𝐹 ∈ Field → {(1r𝑉)} ∈ (LBasis‘𝑉))
5046dimval 31001 . . 3 ((𝑉 ∈ LVec ∧ {(1r𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r𝑉)}))
5114, 49, 50syl2anc 586 . 2 (𝐹 ∈ Field → (dim‘𝑉) = (♯‘{(1r𝑉)}))
52 fvex 6683 . . 3 (1r𝑉) ∈ V
53 hashsng 13731 . . 3 ((1r𝑉) ∈ V → (♯‘{(1r𝑉)}) = 1)
5452, 53ax-mp 5 . 2 (♯‘{(1r𝑉)}) = 1
5551, 54syl6eq 2872 1 (𝐹 ∈ Field → (dim‘𝑉) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  wss 3936  {csn 4567  cfv 6355  (class class class)co 7156  1c1 10538  chash 13691  Basecbs 16483  s cress 16484  0gc0g 16713  1rcur 19251  Ringcrg 19297  CRingccrg 19298  DivRingcdr 19502  Fieldcfield 19503  SubRingcsubrg 19531  LSpanclspn 19743  LBasisclbs 19846  LVecclvec 19874  subringAlg csra 19940  ringLModcrglmod 19941  RSpancrsp 19943  LIndSclinds 20949  dimcldim 30999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-reg 9056  ax-inf2 9104  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-oi 8974  df-r1 9193  df-rank 9194  df-card 9368  df-acn 9371  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ocomp 16586  df-0g 16715  df-mre 16857  df-mrc 16858  df-mri 16859  df-acs 16860  df-proset 17538  df-drs 17539  df-poset 17556  df-ipo 17762  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-drng 19504  df-field 19505  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lbs 19847  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-lindf 20950  df-linds 20951  df-dim 31000
This theorem is referenced by:  extdgid  31050
  Copyright terms: Public domain W3C validator