Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rgmoddim | Structured version Visualization version GIF version |
Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.) |
Ref | Expression |
---|---|
rgmoddim.1 | ⊢ 𝑉 = (ringLMod‘𝐹) |
Ref | Expression |
---|---|
rgmoddim | ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfld 20000 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
2 | 1 | simplbi 498 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
3 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
4 | 3 | ressid 16954 | . . . . 5 ⊢ (𝐹 ∈ Field → (𝐹 ↾s (Base‘𝐹)) = 𝐹) |
5 | 4, 2 | eqeltrd 2839 | . . . 4 ⊢ (𝐹 ∈ Field → (𝐹 ↾s (Base‘𝐹)) ∈ DivRing) |
6 | drngring 19998 | . . . . 5 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
7 | 3 | subrgid 20026 | . . . . 5 ⊢ (𝐹 ∈ Ring → (Base‘𝐹) ∈ (SubRing‘𝐹)) |
8 | 2, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ Field → (Base‘𝐹) ∈ (SubRing‘𝐹)) |
9 | rgmoddim.1 | . . . . . 6 ⊢ 𝑉 = (ringLMod‘𝐹) | |
10 | rlmval 20461 | . . . . . 6 ⊢ (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹)) | |
11 | 9, 10 | eqtri 2766 | . . . . 5 ⊢ 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)) |
12 | eqid 2738 | . . . . 5 ⊢ (𝐹 ↾s (Base‘𝐹)) = (𝐹 ↾s (Base‘𝐹)) | |
13 | 11, 12 | sralvec 31675 | . . . 4 ⊢ ((𝐹 ∈ DivRing ∧ (𝐹 ↾s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐹)) → 𝑉 ∈ LVec) |
14 | 2, 5, 8, 13 | syl3anc 1370 | . . 3 ⊢ (𝐹 ∈ Field → 𝑉 ∈ LVec) |
15 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ Field → 𝐹 ∈ Ring) |
16 | ssidd 3944 | . . . . . . 7 ⊢ (𝐹 ∈ Field → (Base‘𝐹) ⊆ (Base‘𝐹)) | |
17 | 11, 3 | sraring 31672 | . . . . . . 7 ⊢ ((𝐹 ∈ Ring ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ Ring) |
18 | 15, 16, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝑉 ∈ Ring) |
19 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
20 | eqid 2738 | . . . . . . 7 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
21 | 19, 20 | ringidcl 19807 | . . . . . 6 ⊢ (𝑉 ∈ Ring → (1r‘𝑉) ∈ (Base‘𝑉)) |
22 | 18, 21 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Field → (1r‘𝑉) ∈ (Base‘𝑉)) |
23 | 11, 3 | sradrng 31673 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing) |
24 | 2, 16, 23 | syl2anc 584 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝑉 ∈ DivRing) |
25 | eqid 2738 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
26 | 25, 20 | drngunz 20006 | . . . . . 6 ⊢ (𝑉 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
27 | 24, 26 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Field → (1r‘𝑉) ≠ (0g‘𝑉)) |
28 | 19, 25 | lindssn 31573 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (1r‘𝑉) ∈ (Base‘𝑉) ∧ (1r‘𝑉) ≠ (0g‘𝑉)) → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
29 | 14, 22, 27, 28 | syl3anc 1370 | . . . 4 ⊢ (𝐹 ∈ Field → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
30 | rspval 20463 | . . . . . . . . 9 ⊢ (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹)) | |
31 | 9 | fveq2i 6777 | . . . . . . . . 9 ⊢ (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹)) |
32 | 30, 31 | eqtr4i 2769 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (LSpan‘𝑉) |
33 | 32 | fveq1i 6775 | . . . . . . 7 ⊢ ((RSpan‘𝐹)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝐹)}) |
34 | eqid 2738 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (RSpan‘𝐹) | |
35 | eqid 2738 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
36 | 34, 3, 35 | rsp1 20495 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → ((RSpan‘𝐹)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
37 | 33, 36 | eqtr3id 2792 | . . . . . 6 ⊢ (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
38 | 2, 6, 37 | 3syl 18 | . . . . 5 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
39 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝐹 ∈ Field → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))) |
40 | eqidd 2739 | . . . . . . . 8 ⊢ (𝐹 ∈ Field → (1r‘𝐹) = (1r‘𝐹)) | |
41 | 39, 40, 16 | sra1r 31671 | . . . . . . 7 ⊢ (𝐹 ∈ Field → (1r‘𝐹) = (1r‘𝑉)) |
42 | 41 | sneqd 4573 | . . . . . 6 ⊢ (𝐹 ∈ Field → {(1r‘𝐹)} = {(1r‘𝑉)}) |
43 | 42 | fveq2d 6778 | . . . . 5 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝑉)})) |
44 | 39, 16 | srabase 20441 | . . . . 5 ⊢ (𝐹 ∈ Field → (Base‘𝐹) = (Base‘𝑉)) |
45 | 38, 43, 44 | 3eqtr3d 2786 | . . . 4 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉)) |
46 | eqid 2738 | . . . . 5 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
47 | eqid 2738 | . . . . 5 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
48 | 19, 46, 47 | islbs4 21039 | . . . 4 ⊢ ({(1r‘𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r‘𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉))) |
49 | 29, 45, 48 | sylanbrc 583 | . . 3 ⊢ (𝐹 ∈ Field → {(1r‘𝑉)} ∈ (LBasis‘𝑉)) |
50 | 46 | dimval 31686 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ {(1r‘𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
51 | 14, 49, 50 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ Field → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
52 | fvex 6787 | . . 3 ⊢ (1r‘𝑉) ∈ V | |
53 | hashsng 14084 | . . 3 ⊢ ((1r‘𝑉) ∈ V → (♯‘{(1r‘𝑉)}) = 1) | |
54 | 52, 53 | ax-mp 5 | . 2 ⊢ (♯‘{(1r‘𝑉)}) = 1 |
55 | 51, 54 | eqtrdi 2794 | 1 ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ⊆ wss 3887 {csn 4561 ‘cfv 6433 (class class class)co 7275 1c1 10872 ♯chash 14044 Basecbs 16912 ↾s cress 16941 0gc0g 17150 1rcur 19737 Ringcrg 19783 CRingccrg 19784 DivRingcdr 19991 Fieldcfield 19992 SubRingcsubrg 20020 LSpanclspn 20233 LBasisclbs 20336 LVecclvec 20364 subringAlg csra 20430 ringLModcrglmod 20431 RSpancrsp 20433 LIndSclinds 21012 dimcldim 31684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-r1 9522 df-rank 9523 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ocomp 16983 df-0g 17152 df-mre 17295 df-mrc 17296 df-mri 17297 df-acs 17298 df-proset 18013 df-drs 18014 df-poset 18031 df-ipo 18246 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-drng 19993 df-field 19994 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lbs 20337 df-lvec 20365 df-sra 20434 df-rgmod 20435 df-lidl 20436 df-rsp 20437 df-lindf 21013 df-linds 21014 df-dim 31685 |
This theorem is referenced by: extdgid 31735 |
Copyright terms: Public domain | W3C validator |