Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rgmoddim Structured version   Visualization version   GIF version

Theorem rgmoddim 31693
Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.)
Hypothesis
Ref Expression
rgmoddim.1 𝑉 = (ringLMod‘𝐹)
Assertion
Ref Expression
rgmoddim (𝐹 ∈ Field → (dim‘𝑉) = 1)

Proof of Theorem rgmoddim
StepHypRef Expression
1 isfld 20000 . . . . 5 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
21simplbi 498 . . . 4 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
3 eqid 2738 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
43ressid 16954 . . . . 5 (𝐹 ∈ Field → (𝐹s (Base‘𝐹)) = 𝐹)
54, 2eqeltrd 2839 . . . 4 (𝐹 ∈ Field → (𝐹s (Base‘𝐹)) ∈ DivRing)
6 drngring 19998 . . . . 5 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
73subrgid 20026 . . . . 5 (𝐹 ∈ Ring → (Base‘𝐹) ∈ (SubRing‘𝐹))
82, 6, 73syl 18 . . . 4 (𝐹 ∈ Field → (Base‘𝐹) ∈ (SubRing‘𝐹))
9 rgmoddim.1 . . . . . 6 𝑉 = (ringLMod‘𝐹)
10 rlmval 20461 . . . . . 6 (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹))
119, 10eqtri 2766 . . . . 5 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))
12 eqid 2738 . . . . 5 (𝐹s (Base‘𝐹)) = (𝐹s (Base‘𝐹))
1311, 12sralvec 31675 . . . 4 ((𝐹 ∈ DivRing ∧ (𝐹s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐹)) → 𝑉 ∈ LVec)
142, 5, 8, 13syl3anc 1370 . . 3 (𝐹 ∈ Field → 𝑉 ∈ LVec)
152, 6syl 17 . . . . . . 7 (𝐹 ∈ Field → 𝐹 ∈ Ring)
16 ssidd 3944 . . . . . . 7 (𝐹 ∈ Field → (Base‘𝐹) ⊆ (Base‘𝐹))
1711, 3sraring 31672 . . . . . . 7 ((𝐹 ∈ Ring ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ Ring)
1815, 16, 17syl2anc 584 . . . . . 6 (𝐹 ∈ Field → 𝑉 ∈ Ring)
19 eqid 2738 . . . . . . 7 (Base‘𝑉) = (Base‘𝑉)
20 eqid 2738 . . . . . . 7 (1r𝑉) = (1r𝑉)
2119, 20ringidcl 19807 . . . . . 6 (𝑉 ∈ Ring → (1r𝑉) ∈ (Base‘𝑉))
2218, 21syl 17 . . . . 5 (𝐹 ∈ Field → (1r𝑉) ∈ (Base‘𝑉))
2311, 3sradrng 31673 . . . . . . 7 ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing)
242, 16, 23syl2anc 584 . . . . . 6 (𝐹 ∈ Field → 𝑉 ∈ DivRing)
25 eqid 2738 . . . . . . 7 (0g𝑉) = (0g𝑉)
2625, 20drngunz 20006 . . . . . 6 (𝑉 ∈ DivRing → (1r𝑉) ≠ (0g𝑉))
2724, 26syl 17 . . . . 5 (𝐹 ∈ Field → (1r𝑉) ≠ (0g𝑉))
2819, 25lindssn 31573 . . . . 5 ((𝑉 ∈ LVec ∧ (1r𝑉) ∈ (Base‘𝑉) ∧ (1r𝑉) ≠ (0g𝑉)) → {(1r𝑉)} ∈ (LIndS‘𝑉))
2914, 22, 27, 28syl3anc 1370 . . . 4 (𝐹 ∈ Field → {(1r𝑉)} ∈ (LIndS‘𝑉))
30 rspval 20463 . . . . . . . . 9 (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹))
319fveq2i 6777 . . . . . . . . 9 (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹))
3230, 31eqtr4i 2769 . . . . . . . 8 (RSpan‘𝐹) = (LSpan‘𝑉)
3332fveq1i 6775 . . . . . . 7 ((RSpan‘𝐹)‘{(1r𝐹)}) = ((LSpan‘𝑉)‘{(1r𝐹)})
34 eqid 2738 . . . . . . . 8 (RSpan‘𝐹) = (RSpan‘𝐹)
35 eqid 2738 . . . . . . . 8 (1r𝐹) = (1r𝐹)
3634, 3, 35rsp1 20495 . . . . . . 7 (𝐹 ∈ Ring → ((RSpan‘𝐹)‘{(1r𝐹)}) = (Base‘𝐹))
3733, 36eqtr3id 2792 . . . . . 6 (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r𝐹)}) = (Base‘𝐹))
382, 6, 373syl 18 . . . . 5 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝐹)}) = (Base‘𝐹))
3911a1i 11 . . . . . . . 8 (𝐹 ∈ Field → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)))
40 eqidd 2739 . . . . . . . 8 (𝐹 ∈ Field → (1r𝐹) = (1r𝐹))
4139, 40, 16sra1r 31671 . . . . . . 7 (𝐹 ∈ Field → (1r𝐹) = (1r𝑉))
4241sneqd 4573 . . . . . 6 (𝐹 ∈ Field → {(1r𝐹)} = {(1r𝑉)})
4342fveq2d 6778 . . . . 5 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝐹)}) = ((LSpan‘𝑉)‘{(1r𝑉)}))
4439, 16srabase 20441 . . . . 5 (𝐹 ∈ Field → (Base‘𝐹) = (Base‘𝑉))
4538, 43, 443eqtr3d 2786 . . . 4 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝑉)}) = (Base‘𝑉))
46 eqid 2738 . . . . 5 (LBasis‘𝑉) = (LBasis‘𝑉)
47 eqid 2738 . . . . 5 (LSpan‘𝑉) = (LSpan‘𝑉)
4819, 46, 47islbs4 21039 . . . 4 ({(1r𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r𝑉)}) = (Base‘𝑉)))
4929, 45, 48sylanbrc 583 . . 3 (𝐹 ∈ Field → {(1r𝑉)} ∈ (LBasis‘𝑉))
5046dimval 31686 . . 3 ((𝑉 ∈ LVec ∧ {(1r𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r𝑉)}))
5114, 49, 50syl2anc 584 . 2 (𝐹 ∈ Field → (dim‘𝑉) = (♯‘{(1r𝑉)}))
52 fvex 6787 . . 3 (1r𝑉) ∈ V
53 hashsng 14084 . . 3 ((1r𝑉) ∈ V → (♯‘{(1r𝑉)}) = 1)
5452, 53ax-mp 5 . 2 (♯‘{(1r𝑉)}) = 1
5551, 54eqtrdi 2794 1 (𝐹 ∈ Field → (dim‘𝑉) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  1c1 10872  chash 14044  Basecbs 16912  s cress 16941  0gc0g 17150  1rcur 19737  Ringcrg 19783  CRingccrg 19784  DivRingcdr 19991  Fieldcfield 19992  SubRingcsubrg 20020  LSpanclspn 20233  LBasisclbs 20336  LVecclvec 20364  subringAlg csra 20430  ringLModcrglmod 20431  RSpancrsp 20433  LIndSclinds 21012  dimcldim 31684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-r1 9522  df-rank 9523  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ocomp 16983  df-0g 17152  df-mre 17295  df-mrc 17296  df-mri 17297  df-acs 17298  df-proset 18013  df-drs 18014  df-poset 18031  df-ipo 18246  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-field 19994  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lbs 20337  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-lindf 21013  df-linds 21014  df-dim 31685
This theorem is referenced by:  extdgid  31735
  Copyright terms: Public domain W3C validator