![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnbdibl | Structured version Visualization version GIF version |
Description: A continuous bounded function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
cnbdibl.a | ⊢ (𝜑 → 𝐴 ∈ dom vol) |
cnbdibl.va | ⊢ (𝜑 → (vol‘𝐴) ∈ ℝ) |
cnbdibl.f | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
cnbdibl.bd | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
Ref | Expression |
---|---|
cnbdibl | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnbdibl.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom vol) | |
2 | cnbdibl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | |
3 | cnmbf 23874 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → 𝐹 ∈ MblFn) | |
4 | 1, 2, 3 | syl2anc 579 | . 2 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
5 | cncff 23115 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
6 | fdm 6301 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
7 | 2, 5, 6 | 3syl 18 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
8 | 7 | fveq2d 6452 | . . 3 ⊢ (𝜑 → (vol‘dom 𝐹) = (vol‘𝐴)) |
9 | cnbdibl.va | . . 3 ⊢ (𝜑 → (vol‘𝐴) ∈ ℝ) | |
10 | 8, 9 | eqeltrd 2859 | . 2 ⊢ (𝜑 → (vol‘dom 𝐹) ∈ ℝ) |
11 | cnbdibl.bd | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) | |
12 | bddibl 24054 | . 2 ⊢ ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1) | |
13 | 4, 10, 11, 12 | syl3anc 1439 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∃wrex 3091 class class class wbr 4888 dom cdm 5357 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 ℂcc 10272 ℝcr 10273 ≤ cle 10414 abscabs 14387 –cn→ccncf 23098 volcvol 23678 MblFncmbf 23829 𝐿1cibl 23832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cc 9594 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-disj 4857 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-ofr 7177 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-omul 7850 df-er 8028 df-map 8144 df-pm 8145 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-fi 8607 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-acn 9103 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-q 12101 df-rp 12143 df-xneg 12262 df-xadd 12263 df-xmul 12264 df-ioo 12496 df-ioc 12497 df-ico 12498 df-icc 12499 df-fz 12649 df-fzo 12790 df-fl 12917 df-mod 12993 df-seq 13125 df-exp 13184 df-hash 13442 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-limsup 14619 df-clim 14636 df-rlim 14637 df-sum 14834 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-starv 16364 df-sca 16365 df-vsca 16366 df-ip 16367 df-tset 16368 df-ple 16369 df-ds 16371 df-unif 16372 df-hom 16373 df-cco 16374 df-rest 16480 df-topn 16481 df-0g 16499 df-gsum 16500 df-topgen 16501 df-pt 16502 df-prds 16505 df-xrs 16559 df-qtop 16564 df-imas 16565 df-xps 16567 df-mre 16643 df-mrc 16644 df-acs 16646 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-submnd 17733 df-mulg 17939 df-cntz 18144 df-cmn 18592 df-psmet 20145 df-xmet 20146 df-met 20147 df-bl 20148 df-mopn 20149 df-cnfld 20154 df-top 21117 df-topon 21134 df-topsp 21156 df-bases 21169 df-cn 21450 df-cnp 21451 df-cmp 21610 df-tx 21785 df-hmeo 21978 df-xms 22544 df-ms 22545 df-tms 22546 df-cncf 23100 df-ovol 23679 df-vol 23680 df-mbf 23834 df-itg1 23835 df-itg2 23836 df-ibl 23837 df-0p 23885 |
This theorem is referenced by: fourierdlem39 41304 fourierdlem73 41337 |
Copyright terms: Public domain | W3C validator |