![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmaprnlem5N | Structured version Visualization version GIF version |
Description: Lemma for hgmaprnN 41612. Eliminate 𝑡. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hgmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hgmaprnlem1.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmaprnlem1.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmaprnlem1.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hgmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
hgmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hgmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
hgmaprnlem1.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hgmaprnlem1.a | ⊢ 𝐴 = (Base‘𝑃) |
hgmaprnlem1.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hgmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
hgmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hgmaprnlem1.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hgmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hgmaprnlem1.z | ⊢ (𝜑 → 𝑧 ∈ 𝐴) |
Ref | Expression |
---|---|
hgmaprnlem5N | ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmaprnlem1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hgmaprnlem1.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hgmaprnlem1.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hgmaprnlem1.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
5 | hgmaprnlem1.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | dvh1dim 41153 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝑉 𝑡 ≠ 0 ) |
7 | eldifsn 4787 | . . 3 ⊢ (𝑡 ∈ (𝑉 ∖ { 0 }) ↔ (𝑡 ∈ 𝑉 ∧ 𝑡 ≠ 0 )) | |
8 | hgmaprnlem1.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
9 | hgmaprnlem1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
10 | hgmaprnlem1.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
11 | hgmaprnlem1.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
12 | hgmaprnlem1.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
13 | hgmaprnlem1.p | . . . 4 ⊢ 𝑃 = (Scalar‘𝐶) | |
14 | hgmaprnlem1.a | . . . 4 ⊢ 𝐴 = (Base‘𝑃) | |
15 | hgmaprnlem1.e | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
16 | hgmaprnlem1.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
17 | hgmaprnlem1.s | . . . 4 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
18 | hgmaprnlem1.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
19 | 5 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | hgmaprnlem1.z | . . . . 5 ⊢ (𝜑 → 𝑧 ∈ 𝐴) | |
21 | 20 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ 𝐴) |
22 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ (𝑉 ∖ { 0 })) → 𝑡 ∈ (𝑉 ∖ { 0 })) | |
23 | 1, 2, 3, 8, 9, 10, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22 | hgmaprnlem4N 41610 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ ran 𝐺) |
24 | 7, 23 | sylan2br 593 | . 2 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑉 ∧ 𝑡 ≠ 0 )) → 𝑧 ∈ ran 𝐺) |
25 | 6, 24 | rexlimddv 3151 | 1 ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∖ cdif 3945 {csn 4625 ran crn 5675 ‘cfv 6545 Basecbs 17207 Scalarcsca 17263 ·𝑠 cvsca 17264 0gc0g 17448 HLchlt 39060 LHypclh 39695 DVecHcdvh 40789 LCDualclcd 41297 HDMapchdma 41503 HGMapchg 41594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-riotaBAD 38663 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-ot 4634 df-uni 4908 df-int 4949 df-iun 4997 df-iin 4998 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7994 df-2nd 7995 df-tpos 8232 df-undef 8279 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8848 df-en 8966 df-dom 8967 df-sdom 8968 df-fin 8969 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-n0 12518 df-z 12604 df-uz 12868 df-fz 13532 df-struct 17143 df-sets 17160 df-slot 17178 df-ndx 17190 df-base 17208 df-ress 17237 df-plusg 17273 df-mulr 17274 df-sca 17276 df-vsca 17277 df-0g 17450 df-mre 17593 df-mrc 17594 df-acs 17596 df-proset 18314 df-poset 18332 df-plt 18349 df-lub 18365 df-glb 18366 df-join 18367 df-meet 18368 df-p0 18444 df-p1 18445 df-lat 18451 df-clat 18518 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18768 df-grp 18925 df-minusg 18926 df-sbg 18927 df-subg 19112 df-cntz 19306 df-oppg 19335 df-lsm 19629 df-cmn 19775 df-abl 19776 df-mgp 20113 df-rng 20131 df-ur 20160 df-ring 20213 df-oppr 20311 df-dvdsr 20334 df-unit 20335 df-invr 20365 df-dvr 20378 df-nzr 20490 df-rlreg 20667 df-domn 20668 df-drng 20704 df-lmod 20833 df-lss 20904 df-lsp 20944 df-lvec 21076 df-lsatoms 38686 df-lshyp 38687 df-lcv 38729 df-lfl 38768 df-lkr 38796 df-ldual 38834 df-oposet 38886 df-ol 38888 df-oml 38889 df-covers 38976 df-ats 38977 df-atl 39008 df-cvlat 39032 df-hlat 39061 df-llines 39209 df-lplanes 39210 df-lvols 39211 df-lines 39212 df-psubsp 39214 df-pmap 39215 df-padd 39507 df-lhyp 39699 df-laut 39700 df-ldil 39815 df-ltrn 39816 df-trl 39870 df-tgrp 40454 df-tendo 40466 df-edring 40468 df-dveca 40714 df-disoa 40740 df-dvech 40790 df-dib 40850 df-dic 40884 df-dih 40940 df-doch 41059 df-djh 41106 df-lcdual 41298 df-mapd 41336 df-hvmap 41468 df-hdmap1 41504 df-hdmap 41505 df-hgmap 41595 |
This theorem is referenced by: hgmaprnN 41612 |
Copyright terms: Public domain | W3C validator |