Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcd0vvalN Structured version   Visualization version   GIF version

Theorem lcd0vvalN 39223
Description: Value of the zero functional at any vector. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lcd0vval.h 𝐻 = (LHyp‘𝐾)
lcd0vval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcd0vval.v 𝑉 = (Base‘𝑈)
lcd0vval.s 𝑆 = (Scalar‘𝑈)
lcd0vval.z 0 = (0g𝑆)
lcd0vval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcd0vval.o 𝑂 = (0g𝐶)
lcd0vval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcd0vval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lcd0vvalN (𝜑 → (𝑂𝑋) = 0 )

Proof of Theorem lcd0vvalN
StepHypRef Expression
1 lcd0vval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 lcd0vval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 lcd0vval.v . . . 4 𝑉 = (Base‘𝑈)
4 lcd0vval.s . . . 4 𝑆 = (Scalar‘𝑈)
5 lcd0vval.z . . . 4 0 = (0g𝑆)
6 lcd0vval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 lcd0vval.o . . . 4 𝑂 = (0g𝐶)
8 lcd0vval.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 3, 4, 5, 6, 7, 8lcd0v 39221 . . 3 (𝜑𝑂 = (𝑉 × { 0 }))
109fveq1d 6665 . 2 (𝜑 → (𝑂𝑋) = ((𝑉 × { 0 })‘𝑋))
11 lcd0vval.x . . 3 (𝜑𝑋𝑉)
125fvexi 6677 . . . 4 0 ∈ V
1312fvconst2 6963 . . 3 (𝑋𝑉 → ((𝑉 × { 0 })‘𝑋) = 0 )
1411, 13syl 17 . 2 (𝜑 → ((𝑉 × { 0 })‘𝑋) = 0 )
1510, 14eqtrd 2793 1 (𝜑 → (𝑂𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {csn 4525   × cxp 5526  cfv 6340  Basecbs 16554  Scalarcsca 16639  0gc0g 16784  HLchlt 36960  LHypclh 37594  DVecHcdvh 38688  LCDualclcd 39196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-riotaBAD 36563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-undef 7955  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-sca 16652  df-vsca 16653  df-0g 16786  df-mre 16928  df-mrc 16929  df-acs 16931  df-proset 17617  df-poset 17635  df-plt 17647  df-lub 17663  df-glb 17664  df-join 17665  df-meet 17666  df-p0 17728  df-p1 17729  df-lat 17735  df-clat 17797  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-submnd 18036  df-grp 18185  df-minusg 18186  df-sbg 18187  df-subg 18356  df-cntz 18527  df-oppg 18554  df-lsm 18841  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-ring 19380  df-oppr 19457  df-dvdsr 19475  df-unit 19476  df-invr 19506  df-dvr 19517  df-drng 19585  df-lmod 19717  df-lss 19785  df-lsp 19825  df-lvec 19956  df-lsatoms 36586  df-lshyp 36587  df-lcv 36629  df-lfl 36668  df-lkr 36696  df-ldual 36734  df-oposet 36786  df-ol 36788  df-oml 36789  df-covers 36876  df-ats 36877  df-atl 36908  df-cvlat 36932  df-hlat 36961  df-llines 37108  df-lplanes 37109  df-lvols 37110  df-lines 37111  df-psubsp 37113  df-pmap 37114  df-padd 37406  df-lhyp 37598  df-laut 37599  df-ldil 37714  df-ltrn 37715  df-trl 37769  df-tgrp 38353  df-tendo 38365  df-edring 38367  df-dveca 38613  df-disoa 38639  df-dvech 38689  df-dib 38749  df-dic 38783  df-dih 38839  df-doch 38958  df-djh 39005  df-lcdual 39197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator