Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh75cN Structured version   Visualization version   GIF version

Theorem mapdh75cN 41358
Description: Part (7) of [Baer] p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh75.h 𝐻 = (LHyp‘𝐾)
mapdh75.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh75.v 𝑉 = (Base‘𝑈)
mapdh75.s = (-g𝑈)
mapdh75.o 0 = (0g𝑈)
mapdh75.n 𝑁 = (LSpan‘𝑈)
mapdh75.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh75.d 𝐷 = (Base‘𝐶)
mapdh75.r 𝑅 = (-g𝐶)
mapdh75.q 𝑄 = (0g𝐶)
mapdh75.j 𝐽 = (LSpan‘𝐶)
mapdh75.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh75.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh75.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh75.f (𝜑𝐹𝐷)
mapdh75.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh75a (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh75c.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh75c.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh75c.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
mapdh75cN (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹)
Distinct variable groups:   𝑥,,   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐺,𝑥   0 ,,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑥,𝑄   𝑅,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh75cN
StepHypRef Expression
1 mapdh75.h . 2 𝐻 = (LHyp‘𝐾)
2 mapdh75.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh75.v . 2 𝑉 = (Base‘𝑈)
4 mapdh75.s . 2 = (-g𝑈)
5 mapdh75.o . 2 0 = (0g𝑈)
6 mapdh75.n . 2 𝑁 = (LSpan‘𝑈)
7 mapdh75.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh75.d . 2 𝐷 = (Base‘𝐶)
9 mapdh75.r . 2 𝑅 = (-g𝐶)
10 mapdh75.q . 2 𝑄 = (0g𝐶)
11 mapdh75.j . 2 𝐽 = (LSpan‘𝐶)
12 mapdh75.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh75.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh75.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh75.f . 2 (𝜑𝐹𝐷)
16 mapdh75.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdh75a . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
18 mapdh75c.ne . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
19 mapdh75c.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
20 mapdh75c.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20mapdh75e 41357 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461  cdif 3941  ifcif 4530  {csn 4630  cotp 4638  cmpt 5232  cfv 6549  crio 7374  (class class class)co 7419  1st c1st 7992  2nd c2nd 7993  Basecbs 17188  0gc0g 17429  -gcsg 18905  LSpanclspn 20872  HLchlt 38954  LHypclh 39589  DVecHcdvh 40683  LCDualclcd 41191  mapdcmpd 41229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-riotaBAD 38557
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-undef 8279  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-mulr 17255  df-sca 17257  df-vsca 17258  df-0g 17431  df-mre 17574  df-mrc 17575  df-acs 17577  df-proset 18295  df-poset 18313  df-plt 18330  df-lub 18346  df-glb 18347  df-join 18348  df-meet 18349  df-p0 18425  df-p1 18426  df-lat 18432  df-clat 18499  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-submnd 18749  df-grp 18906  df-minusg 18907  df-sbg 18908  df-subg 19091  df-cntz 19285  df-oppg 19314  df-lsm 19608  df-cmn 19754  df-abl 19755  df-mgp 20092  df-rng 20110  df-ur 20139  df-ring 20192  df-oppr 20290  df-dvdsr 20313  df-unit 20314  df-invr 20344  df-dvr 20357  df-drng 20643  df-lmod 20762  df-lss 20833  df-lsp 20873  df-lvec 21005  df-lsatoms 38580  df-lshyp 38581  df-lcv 38623  df-lfl 38662  df-lkr 38690  df-ldual 38728  df-oposet 38780  df-ol 38782  df-oml 38783  df-covers 38870  df-ats 38871  df-atl 38902  df-cvlat 38926  df-hlat 38955  df-llines 39103  df-lplanes 39104  df-lvols 39105  df-lines 39106  df-psubsp 39108  df-pmap 39109  df-padd 39401  df-lhyp 39593  df-laut 39594  df-ldil 39709  df-ltrn 39710  df-trl 39764  df-tgrp 40348  df-tendo 40360  df-edring 40362  df-dveca 40608  df-disoa 40634  df-dvech 40684  df-dib 40744  df-dic 40778  df-dih 40834  df-doch 40953  df-djh 41000  df-lcdual 41192  df-mapd 41230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator