Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh75cN Structured version   Visualization version   GIF version

Theorem mapdh75cN 38758
Description: Part (7) of [Baer] p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh75.h 𝐻 = (LHyp‘𝐾)
mapdh75.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh75.v 𝑉 = (Base‘𝑈)
mapdh75.s = (-g𝑈)
mapdh75.o 0 = (0g𝑈)
mapdh75.n 𝑁 = (LSpan‘𝑈)
mapdh75.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh75.d 𝐷 = (Base‘𝐶)
mapdh75.r 𝑅 = (-g𝐶)
mapdh75.q 𝑄 = (0g𝐶)
mapdh75.j 𝐽 = (LSpan‘𝐶)
mapdh75.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh75.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh75.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh75.f (𝜑𝐹𝐷)
mapdh75.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh75a (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh75c.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh75c.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh75c.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
mapdh75cN (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹)
Distinct variable groups:   𝑥,,   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐺,𝑥   0 ,,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑥,𝑄   𝑅,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh75cN
StepHypRef Expression
1 mapdh75.h . 2 𝐻 = (LHyp‘𝐾)
2 mapdh75.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh75.v . 2 𝑉 = (Base‘𝑈)
4 mapdh75.s . 2 = (-g𝑈)
5 mapdh75.o . 2 0 = (0g𝑈)
6 mapdh75.n . 2 𝑁 = (LSpan‘𝑈)
7 mapdh75.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh75.d . 2 𝐷 = (Base‘𝐶)
9 mapdh75.r . 2 𝑅 = (-g𝐶)
10 mapdh75.q . 2 𝑄 = (0g𝐶)
11 mapdh75.j . 2 𝐽 = (LSpan‘𝐶)
12 mapdh75.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh75.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh75.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh75.f . 2 (𝜑𝐹𝐷)
16 mapdh75.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdh75a . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
18 mapdh75c.ne . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
19 mapdh75c.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
20 mapdh75c.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20mapdh75e 38757 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑋⟩) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wne 3020  Vcvv 3499  cdif 3936  ifcif 4469  {csn 4563  cotp 4571  cmpt 5142  cfv 6351  crio 7108  (class class class)co 7151  1st c1st 7681  2nd c2nd 7682  Basecbs 16475  0gc0g 16705  -gcsg 18037  LSpanclspn 19665  HLchlt 36355  LHypclh 36989  DVecHcdvh 38083  LCDualclcd 38591  mapdcmpd 38629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 35958
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-ot 4572  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-tpos 7886  df-undef 7933  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-subg 18208  df-cntz 18379  df-oppg 18406  df-lsm 18683  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-oppr 19295  df-dvdsr 19313  df-unit 19314  df-invr 19344  df-dvr 19355  df-drng 19426  df-lmod 19558  df-lss 19626  df-lsp 19666  df-lvec 19797  df-lsatoms 35981  df-lshyp 35982  df-lcv 36024  df-lfl 36063  df-lkr 36091  df-ldual 36129  df-oposet 36181  df-ol 36183  df-oml 36184  df-covers 36271  df-ats 36272  df-atl 36303  df-cvlat 36327  df-hlat 36356  df-llines 36503  df-lplanes 36504  df-lvols 36505  df-lines 36506  df-psubsp 36508  df-pmap 36509  df-padd 36801  df-lhyp 36993  df-laut 36994  df-ldil 37109  df-ltrn 37110  df-trl 37164  df-tgrp 37748  df-tendo 37760  df-edring 37762  df-dveca 38008  df-disoa 38034  df-dvech 38084  df-dib 38144  df-dic 38178  df-dih 38234  df-doch 38353  df-djh 38400  df-lcdual 38592  df-mapd 38630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator