![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh75d | Structured version Visualization version GIF version |
Description: Part (7) of [Baer] p. 48 line 10 (4 of 6 cases). (Contributed by NM, 2-May-2015.) |
Ref | Expression |
---|---|
mapdh75.h | β’ π» = (LHypβπΎ) |
mapdh75.u | β’ π = ((DVecHβπΎ)βπ) |
mapdh75.v | β’ π = (Baseβπ) |
mapdh75.s | β’ β = (-gβπ) |
mapdh75.o | β’ 0 = (0gβπ) |
mapdh75.n | β’ π = (LSpanβπ) |
mapdh75.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdh75.d | β’ π· = (BaseβπΆ) |
mapdh75.r | β’ π = (-gβπΆ) |
mapdh75.q | β’ π = (0gβπΆ) |
mapdh75.j | β’ π½ = (LSpanβπΆ) |
mapdh75.m | β’ π = ((mapdβπΎ)βπ) |
mapdh75.i | β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) |
mapdh75.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdh75.f | β’ (π β πΉ β π·) |
mapdh75.mn | β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) |
mapdh75a | β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) |
mapdh75d.b | β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) |
mapdh75d.vw | β’ (π β (πβ{π}) β (πβ{π})) |
mapdh75d.un | β’ (π β Β¬ π β (πβ{π, π})) |
mapdh75d.x | β’ (π β π β (π β { 0 })) |
mapdh75d.y | β’ (π β π β (π β { 0 })) |
mapdh75d.z | β’ (π β π β (π β { 0 })) |
Ref | Expression |
---|---|
mapdh75d | β’ (π β (πΌββ¨π, πΊ, πβ©) = πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh75.q | . 2 β’ π = (0gβπΆ) | |
2 | mapdh75.i | . 2 β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) | |
3 | mapdh75.h | . 2 β’ π» = (LHypβπΎ) | |
4 | mapdh75.m | . 2 β’ π = ((mapdβπΎ)βπ) | |
5 | mapdh75.u | . 2 β’ π = ((DVecHβπΎ)βπ) | |
6 | mapdh75.v | . 2 β’ π = (Baseβπ) | |
7 | mapdh75.s | . 2 β’ β = (-gβπ) | |
8 | mapdh75.o | . 2 β’ 0 = (0gβπ) | |
9 | mapdh75.n | . 2 β’ π = (LSpanβπ) | |
10 | mapdh75.c | . 2 β’ πΆ = ((LCDualβπΎ)βπ) | |
11 | mapdh75.d | . 2 β’ π· = (BaseβπΆ) | |
12 | mapdh75.r | . 2 β’ π = (-gβπΆ) | |
13 | mapdh75.j | . 2 β’ π½ = (LSpanβπΆ) | |
14 | mapdh75.k | . 2 β’ (π β (πΎ β HL β§ π β π»)) | |
15 | mapdh75.f | . 2 β’ (π β πΉ β π·) | |
16 | mapdh75.mn | . 2 β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) | |
17 | mapdh75d.x | . 2 β’ (π β π β (π β { 0 })) | |
18 | mapdh75d.y | . 2 β’ (π β π β (π β { 0 })) | |
19 | mapdh75d.z | . 2 β’ (π β π β (π β { 0 })) | |
20 | mapdh75d.un | . 2 β’ (π β Β¬ π β (πβ{π, π})) | |
21 | mapdh75d.vw | . 2 β’ (π β (πβ{π}) β (πβ{π})) | |
22 | mapdh75a | . 2 β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) | |
23 | mapdh75d.b | . 2 β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) | |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | mapdheq4 41059 | 1 β’ (π β (πΌββ¨π, πΊ, πβ©) = πΈ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2932 Vcvv 3466 β cdif 3937 ifcif 4520 {csn 4620 {cpr 4622 β¨cotp 4628 β¦ cmpt 5221 βcfv 6533 β©crio 7356 (class class class)co 7401 1st c1st 7966 2nd c2nd 7967 Basecbs 17140 0gc0g 17381 -gcsg 18852 LSpanclspn 20803 HLchlt 38676 LHypclh 39311 DVecHcdvh 40405 LCDualclcd 40913 mapdcmpd 40951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-riotaBAD 38279 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-0g 17383 df-mre 17526 df-mrc 17527 df-acs 17529 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-submnd 18701 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19035 df-cntz 19218 df-oppg 19247 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20025 df-rng 20043 df-ur 20072 df-ring 20125 df-oppr 20221 df-dvdsr 20244 df-unit 20245 df-invr 20275 df-dvr 20288 df-drng 20574 df-lmod 20693 df-lss 20764 df-lsp 20804 df-lvec 20936 df-lsatoms 38302 df-lshyp 38303 df-lcv 38345 df-lfl 38384 df-lkr 38412 df-ldual 38450 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-llines 38825 df-lplanes 38826 df-lvols 38827 df-lines 38828 df-psubsp 38830 df-pmap 38831 df-padd 39123 df-lhyp 39315 df-laut 39316 df-ldil 39431 df-ltrn 39432 df-trl 39486 df-tgrp 40070 df-tendo 40082 df-edring 40084 df-dveca 40330 df-disoa 40356 df-dvech 40406 df-dib 40466 df-dic 40500 df-dih 40556 df-doch 40675 df-djh 40722 df-lcdual 40914 df-mapd 40952 |
This theorem is referenced by: mapdh75fN 41082 mapdh8aa 41103 |
Copyright terms: Public domain | W3C validator |