Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh75d Structured version   Visualization version   GIF version

Theorem mapdh75d 39356
Description: Part (7) of [Baer] p. 48 line 10 (4 of 6 cases). (Contributed by NM, 2-May-2015.)
Hypotheses
Ref Expression
mapdh75.h 𝐻 = (LHyp‘𝐾)
mapdh75.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh75.v 𝑉 = (Base‘𝑈)
mapdh75.s = (-g𝑈)
mapdh75.o 0 = (0g𝑈)
mapdh75.n 𝑁 = (LSpan‘𝑈)
mapdh75.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh75.d 𝐷 = (Base‘𝐶)
mapdh75.r 𝑅 = (-g𝐶)
mapdh75.q 𝑄 = (0g𝐶)
mapdh75.j 𝐽 = (LSpan‘𝐶)
mapdh75.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh75.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh75.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh75.f (𝜑𝐹𝐷)
mapdh75.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh75a (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh75d.b (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
mapdh75d.vw (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh75d.un (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh75d.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh75d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh75d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
mapdh75d (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑍⟩) = 𝐸)
Distinct variable groups:   𝑥,,   𝐶,   𝐷,,𝑥   ,𝐸,𝑥   ,𝐹,𝑥   ,𝐺,𝑥   0 ,,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑥,𝑄   𝑅,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh75d
StepHypRef Expression
1 mapdh75.q . 2 𝑄 = (0g𝐶)
2 mapdh75.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh75.h . 2 𝐻 = (LHyp‘𝐾)
4 mapdh75.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh75.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh75.v . 2 𝑉 = (Base‘𝑈)
7 mapdh75.s . 2 = (-g𝑈)
8 mapdh75.o . 2 0 = (0g𝑈)
9 mapdh75.n . 2 𝑁 = (LSpan‘𝑈)
10 mapdh75.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh75.d . 2 𝐷 = (Base‘𝐶)
12 mapdh75.r . 2 𝑅 = (-g𝐶)
13 mapdh75.j . 2 𝐽 = (LSpan‘𝐶)
14 mapdh75.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh75.f . 2 (𝜑𝐹𝐷)
16 mapdh75.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdh75d.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 mapdh75d.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
19 mapdh75d.z . 2 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
20 mapdh75d.un . 2 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
21 mapdh75d.vw . 2 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
22 mapdh75a . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
23 mapdh75d.b . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23mapdheq4 39334 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑍⟩) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2951  Vcvv 3409  cdif 3857  ifcif 4423  {csn 4525  {cpr 4527  cotp 4533  cmpt 5115  cfv 6339  crio 7112  (class class class)co 7155  1st c1st 7696  2nd c2nd 7697  Basecbs 16546  0gc0g 16776  -gcsg 18176  LSpanclspn 19816  HLchlt 36952  LHypclh 37586  DVecHcdvh 38680  LCDualclcd 39188  mapdcmpd 39226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-riotaBAD 36555
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-tpos 7907  df-undef 7954  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-sca 16644  df-vsca 16645  df-0g 16778  df-mre 16920  df-mrc 16921  df-acs 16923  df-proset 17609  df-poset 17627  df-plt 17639  df-lub 17655  df-glb 17656  df-join 17657  df-meet 17658  df-p0 17720  df-p1 17721  df-lat 17727  df-clat 17789  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-submnd 18028  df-grp 18177  df-minusg 18178  df-sbg 18179  df-subg 18348  df-cntz 18519  df-oppg 18546  df-lsm 18833  df-cmn 18980  df-abl 18981  df-mgp 19313  df-ur 19325  df-ring 19372  df-oppr 19449  df-dvdsr 19467  df-unit 19468  df-invr 19498  df-dvr 19509  df-drng 19577  df-lmod 19709  df-lss 19777  df-lsp 19817  df-lvec 19948  df-lsatoms 36578  df-lshyp 36579  df-lcv 36621  df-lfl 36660  df-lkr 36688  df-ldual 36726  df-oposet 36778  df-ol 36780  df-oml 36781  df-covers 36868  df-ats 36869  df-atl 36900  df-cvlat 36924  df-hlat 36953  df-llines 37100  df-lplanes 37101  df-lvols 37102  df-lines 37103  df-psubsp 37105  df-pmap 37106  df-padd 37398  df-lhyp 37590  df-laut 37591  df-ldil 37706  df-ltrn 37707  df-trl 37761  df-tgrp 38345  df-tendo 38357  df-edring 38359  df-dveca 38605  df-disoa 38631  df-dvech 38681  df-dib 38741  df-dic 38775  df-dih 38831  df-doch 38950  df-djh 38997  df-lcdual 39189  df-mapd 39227
This theorem is referenced by:  mapdh75fN  39357  mapdh8aa  39378
  Copyright terms: Public domain W3C validator