Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8i | Structured version Visualization version GIF version |
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 11-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh8a.s | ⊢ − = (-g‘𝑈) |
mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh8h.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh8h.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdh8i.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh8i.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh8i.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdh8i.xy | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdh8i.xz | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
mapdh8i.yt | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
mapdh8i.zt | ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
mapdh8i.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
mapdh8i.xt | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
Ref | Expression |
---|---|
mapdh8i | ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdh8a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdh8a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | mapdh8a.s | . . 3 ⊢ − = (-g‘𝑈) | |
5 | mapdh8a.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | mapdh8a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | mapdh8a.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | mapdh8a.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | mapdh8a.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
10 | mapdh8a.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
11 | mapdh8a.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | mapdh8a.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | mapdh8a.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
14 | mapdh8a.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdh8h.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | mapdh8h.mn | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
17 | eqidd 2738 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) | |
18 | mapdh8i.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
19 | mapdh8i.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
20 | mapdh8i.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
21 | mapdh8i.xy | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
22 | mapdh8i.xt | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) | |
23 | mapdh8i.yt | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | mapdh8g 40004 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
25 | eqidd 2738 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) | |
26 | mapdh8i.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
27 | mapdh8i.xz | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) | |
28 | mapdh8i.zt | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) | |
29 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 25, 18, 26, 20, 27, 22, 28 | mapdh8g 40004 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
30 | 24, 29 | eqtr4d 2780 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 Vcvv 3441 ∖ cdif 3894 ifcif 4471 {csn 4571 〈cotp 4579 ↦ cmpt 5170 ‘cfv 6465 ℩crio 7271 (class class class)co 7315 1st c1st 7874 2nd c2nd 7875 Basecbs 16982 0gc0g 17220 -gcsg 18648 LSpanclspn 20305 HLchlt 37568 LHypclh 38203 DVecHcdvh 39297 LCDualclcd 39805 mapdcmpd 39843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-riotaBAD 37171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-om 7758 df-1st 7876 df-2nd 7877 df-tpos 8089 df-undef 8136 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-map 8665 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-n0 12307 df-z 12393 df-uz 12656 df-fz 13313 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-sca 17048 df-vsca 17049 df-0g 17222 df-mre 17365 df-mrc 17366 df-acs 17368 df-proset 18083 df-poset 18101 df-plt 18118 df-lub 18134 df-glb 18135 df-join 18136 df-meet 18137 df-p0 18213 df-p1 18214 df-lat 18220 df-clat 18287 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-submnd 18501 df-grp 18649 df-minusg 18650 df-sbg 18651 df-subg 18821 df-cntz 18992 df-oppg 19019 df-lsm 19310 df-cmn 19456 df-abl 19457 df-mgp 19789 df-ur 19806 df-ring 19853 df-oppr 19930 df-dvdsr 19951 df-unit 19952 df-invr 19982 df-dvr 19993 df-drng 20065 df-lmod 20197 df-lss 20266 df-lsp 20306 df-lvec 20437 df-lsatoms 37194 df-lshyp 37195 df-lcv 37237 df-lfl 37276 df-lkr 37304 df-ldual 37342 df-oposet 37394 df-ol 37396 df-oml 37397 df-covers 37484 df-ats 37485 df-atl 37516 df-cvlat 37540 df-hlat 37569 df-llines 37717 df-lplanes 37718 df-lvols 37719 df-lines 37720 df-psubsp 37722 df-pmap 37723 df-padd 38015 df-lhyp 38207 df-laut 38208 df-ldil 38323 df-ltrn 38324 df-trl 38378 df-tgrp 38962 df-tendo 38974 df-edring 38976 df-dveca 39222 df-disoa 39248 df-dvech 39298 df-dib 39358 df-dic 39392 df-dih 39448 df-doch 39567 df-djh 39614 df-lcdual 39806 df-mapd 39844 |
This theorem is referenced by: mapdh8j 40006 |
Copyright terms: Public domain | W3C validator |