| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8i | Structured version Visualization version GIF version | ||
| Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 11-May-2015.) |
| Ref | Expression |
|---|---|
| mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh8a.s | ⊢ − = (-g‘𝑈) |
| mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
| mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdh8h.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh8h.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdh8i.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh8i.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh8i.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdh8i.xy | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdh8i.xz | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| mapdh8i.yt | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| mapdh8i.zt | ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
| mapdh8i.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| mapdh8i.xt | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
| Ref | Expression |
|---|---|
| mapdh8i | ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh8a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdh8a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdh8a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | mapdh8a.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 5 | mapdh8a.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 6 | mapdh8a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | mapdh8a.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | mapdh8a.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | mapdh8a.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | mapdh8a.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | mapdh8a.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | mapdh8a.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | mapdh8a.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 14 | mapdh8a.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | mapdh8h.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | mapdh8h.mn | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 17 | eqidd 2736 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) | |
| 18 | mapdh8i.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 19 | mapdh8i.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 20 | mapdh8i.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
| 21 | mapdh8i.xy | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 22 | mapdh8i.xt | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) | |
| 23 | mapdh8i.yt | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
| 24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | mapdh8g 41750 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| 25 | eqidd 2736 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) | |
| 26 | mapdh8i.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 27 | mapdh8i.xz | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) | |
| 28 | mapdh8i.zt | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) | |
| 29 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 25, 18, 26, 20, 27, 22, 28 | mapdh8g 41750 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| 30 | 24, 29 | eqtr4d 2773 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∖ cdif 3923 ifcif 4500 {csn 4601 〈cotp 4609 ↦ cmpt 5201 ‘cfv 6530 ℩crio 7359 (class class class)co 7403 1st c1st 7984 2nd c2nd 7985 Basecbs 17226 0gc0g 17451 -gcsg 18916 LSpanclspn 20926 HLchlt 39314 LHypclh 39949 DVecHcdvh 41043 LCDualclcd 41551 mapdcmpd 41589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-riotaBAD 38917 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-undef 8270 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-0g 17453 df-mre 17596 df-mrc 17597 df-acs 17599 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-p1 18434 df-lat 18440 df-clat 18507 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-cntz 19298 df-oppg 19327 df-lsm 19615 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-dvr 20359 df-nzr 20471 df-rlreg 20652 df-domn 20653 df-drng 20689 df-lmod 20817 df-lss 20887 df-lsp 20927 df-lvec 21059 df-lsatoms 38940 df-lshyp 38941 df-lcv 38983 df-lfl 39022 df-lkr 39050 df-ldual 39088 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-llines 39463 df-lplanes 39464 df-lvols 39465 df-lines 39466 df-psubsp 39468 df-pmap 39469 df-padd 39761 df-lhyp 39953 df-laut 39954 df-ldil 40069 df-ltrn 40070 df-trl 40124 df-tgrp 40708 df-tendo 40720 df-edring 40722 df-dveca 40968 df-disoa 40994 df-dvech 41044 df-dib 41104 df-dic 41138 df-dih 41194 df-doch 41313 df-djh 41360 df-lcdual 41552 df-mapd 41590 |
| This theorem is referenced by: mapdh8j 41752 |
| Copyright terms: Public domain | W3C validator |