| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8j | Structured version Visualization version GIF version | ||
| Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
| Ref | Expression |
|---|---|
| mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh8a.s | ⊢ − = (-g‘𝑈) |
| mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
| mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdh8h.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh8h.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdh8i.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh8i.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh8i.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdh8i.xy | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdh8i.xz | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| mapdh8i.yt | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| mapdh8i.zt | ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
| mapdh8j.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| mapdh8j | ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh8a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdh8a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdh8a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | mapdh8a.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 5 | mapdh8a.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 6 | mapdh8a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | mapdh8a.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | mapdh8a.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | mapdh8a.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | mapdh8a.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | mapdh8a.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | mapdh8a.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | mapdh8a.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 14 | mapdh8a.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 16 | mapdh8h.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝐹 ∈ 𝐷) |
| 18 | mapdh8h.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 20 | eqidd 2735 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) | |
| 21 | eqidd 2735 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) | |
| 22 | mapdh8i.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 24 | mapdh8i.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 26 | mapdh8i.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| 28 | mapdh8j.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| 30 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) | |
| 31 | mapdh8i.xy | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 32 | 31 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 33 | mapdh8i.xz | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) | |
| 34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| 35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 20, 21, 23, 25, 27, 29, 30, 32, 34 | mapdh8ad 41722 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
| 36 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 37 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝐹 ∈ 𝐷) |
| 38 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 39 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 40 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 41 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| 42 | 31 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 43 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| 44 | mapdh8i.yt | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
| 45 | 44 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| 46 | mapdh8i.zt | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) | |
| 47 | 46 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
| 48 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| 49 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) | |
| 50 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 48, 49 | mapdh8i 41729 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
| 51 | 35, 50 | pm2.61dane 3018 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3464 ∖ cdif 3930 ifcif 4507 {csn 4608 〈cotp 4616 ↦ cmpt 5207 ‘cfv 6542 ℩crio 7370 (class class class)co 7414 1st c1st 7995 2nd c2nd 7996 Basecbs 17230 0gc0g 17460 -gcsg 18927 LSpanclspn 20942 HLchlt 39292 LHypclh 39927 DVecHcdvh 41021 LCDualclcd 41529 mapdcmpd 41567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38895 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-ot 4617 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-tpos 8234 df-undef 8281 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-0g 17462 df-mre 17605 df-mrc 17606 df-acs 17608 df-proset 18315 df-poset 18334 df-plt 18349 df-lub 18365 df-glb 18366 df-join 18367 df-meet 18368 df-p0 18444 df-p1 18445 df-lat 18451 df-clat 18518 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-cntz 19309 df-oppg 19338 df-lsm 19627 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-invr 20361 df-dvr 20374 df-nzr 20486 df-rlreg 20667 df-domn 20668 df-drng 20704 df-lmod 20833 df-lss 20903 df-lsp 20943 df-lvec 21075 df-lsatoms 38918 df-lshyp 38919 df-lcv 38961 df-lfl 39000 df-lkr 39028 df-ldual 39066 df-oposet 39118 df-ol 39120 df-oml 39121 df-covers 39208 df-ats 39209 df-atl 39240 df-cvlat 39264 df-hlat 39293 df-llines 39441 df-lplanes 39442 df-lvols 39443 df-lines 39444 df-psubsp 39446 df-pmap 39447 df-padd 39739 df-lhyp 39931 df-laut 39932 df-ldil 40047 df-ltrn 40048 df-trl 40102 df-tgrp 40686 df-tendo 40698 df-edring 40700 df-dveca 40946 df-disoa 40972 df-dvech 41022 df-dib 41082 df-dic 41116 df-dih 41172 df-doch 41291 df-djh 41338 df-lcdual 41530 df-mapd 41568 |
| This theorem is referenced by: mapdh8 41731 |
| Copyright terms: Public domain | W3C validator |