Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8j | Structured version Visualization version GIF version |
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh8a.s | ⊢ − = (-g‘𝑈) |
mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh8h.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh8h.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdh8i.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh8i.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh8i.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdh8i.xy | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdh8i.xz | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
mapdh8i.yt | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
mapdh8i.zt | ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
mapdh8j.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
mapdh8j | ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdh8a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdh8a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | mapdh8a.s | . . 3 ⊢ − = (-g‘𝑈) | |
5 | mapdh8a.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | mapdh8a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | mapdh8a.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | mapdh8a.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | mapdh8a.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
10 | mapdh8a.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
11 | mapdh8a.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | mapdh8a.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | mapdh8a.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
14 | mapdh8a.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | 14 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | mapdh8h.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
17 | 16 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝐹 ∈ 𝐷) |
18 | mapdh8h.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
19 | 18 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
20 | eqidd 2759 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) | |
21 | eqidd 2759 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) | |
22 | mapdh8i.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
23 | 22 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
24 | mapdh8i.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
25 | 24 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
26 | mapdh8i.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
27 | 26 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
28 | mapdh8j.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
29 | 28 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
30 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) | |
31 | mapdh8i.xy | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
32 | 31 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
33 | mapdh8i.xz | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) | |
34 | 33 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 20, 21, 23, 25, 27, 29, 30, 32, 34 | mapdh8ad 39381 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
36 | 14 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
37 | 16 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝐹 ∈ 𝐷) |
38 | 18 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
39 | 22 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
40 | 24 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
41 | 26 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
42 | 31 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
43 | 33 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
44 | mapdh8i.yt | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
45 | 44 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
46 | mapdh8i.zt | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) | |
47 | 46 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
48 | 28 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
49 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) | |
50 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 48, 49 | mapdh8i 39388 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
51 | 35, 50 | pm2.61dane 3038 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 Vcvv 3409 ∖ cdif 3857 ifcif 4423 {csn 4525 〈cotp 4533 ↦ cmpt 5115 ‘cfv 6339 ℩crio 7112 (class class class)co 7155 1st c1st 7696 2nd c2nd 7697 Basecbs 16546 0gc0g 16776 -gcsg 18176 LSpanclspn 19816 HLchlt 36952 LHypclh 37586 DVecHcdvh 38680 LCDualclcd 39188 mapdcmpd 39226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-riotaBAD 36555 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-ot 4534 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-om 7585 df-1st 7698 df-2nd 7699 df-tpos 7907 df-undef 7954 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-sca 16644 df-vsca 16645 df-0g 16778 df-mre 16920 df-mrc 16921 df-acs 16923 df-proset 17609 df-poset 17627 df-plt 17639 df-lub 17655 df-glb 17656 df-join 17657 df-meet 17658 df-p0 17720 df-p1 17721 df-lat 17727 df-clat 17789 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-submnd 18028 df-grp 18177 df-minusg 18178 df-sbg 18179 df-subg 18348 df-cntz 18519 df-oppg 18546 df-lsm 18833 df-cmn 18980 df-abl 18981 df-mgp 19313 df-ur 19325 df-ring 19372 df-oppr 19449 df-dvdsr 19467 df-unit 19468 df-invr 19498 df-dvr 19509 df-drng 19577 df-lmod 19709 df-lss 19777 df-lsp 19817 df-lvec 19948 df-lsatoms 36578 df-lshyp 36579 df-lcv 36621 df-lfl 36660 df-lkr 36688 df-ldual 36726 df-oposet 36778 df-ol 36780 df-oml 36781 df-covers 36868 df-ats 36869 df-atl 36900 df-cvlat 36924 df-hlat 36953 df-llines 37100 df-lplanes 37101 df-lvols 37102 df-lines 37103 df-psubsp 37105 df-pmap 37106 df-padd 37398 df-lhyp 37590 df-laut 37591 df-ldil 37706 df-ltrn 37707 df-trl 37761 df-tgrp 38345 df-tendo 38357 df-edring 38359 df-dveca 38605 df-disoa 38631 df-dvech 38681 df-dib 38741 df-dic 38775 df-dih 38831 df-doch 38950 df-djh 38997 df-lcdual 39189 df-mapd 39227 |
This theorem is referenced by: mapdh8 39390 |
Copyright terms: Public domain | W3C validator |