Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8j Structured version   Visualization version   GIF version

Theorem mapdh8j 39389
 Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8h.f (𝜑𝐹𝐷)
mapdh8h.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8i.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8i.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8i.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh8i.xy (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh8i.xz (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
mapdh8i.yt (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
mapdh8i.zt (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇}))
mapdh8j.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
mapdh8j (𝜑 → (𝐼‘⟨𝑌, (𝐼‘⟨𝑋, 𝐹, 𝑌⟩), 𝑇⟩) = (𝐼‘⟨𝑍, (𝐼‘⟨𝑋, 𝐹, 𝑍⟩), 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝑍,𝑥   𝑥,𝐼   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh8j
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . 3 = (-g𝑈)
5 mapdh8a.o . . 3 0 = (0g𝑈)
6 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . 3 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . 3 𝑅 = (-g𝐶)
10 mapdh8a.q . . 3 𝑄 = (0g𝐶)
11 mapdh8a.j . . 3 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8h.f . . . 4 (𝜑𝐹𝐷)
1716adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝐹𝐷)
18 mapdh8h.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
1918adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 eqidd 2759 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑌⟩))
21 eqidd 2759 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
22 mapdh8i.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2322adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
24 mapdh8i.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2524adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
26 mapdh8i.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
2726adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑍 ∈ (𝑉 ∖ { 0 }))
28 mapdh8j.t . . . 4 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
2928adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
30 simpr 488 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
31 mapdh8i.xy . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
3231adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
33 mapdh8i.xz . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
3433adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 20, 21, 23, 25, 27, 29, 30, 32, 34mapdh8ad 39381 . 2 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑇})) → (𝐼‘⟨𝑌, (𝐼‘⟨𝑋, 𝐹, 𝑌⟩), 𝑇⟩) = (𝐼‘⟨𝑍, (𝐼‘⟨𝑋, 𝐹, 𝑍⟩), 𝑇⟩))
3614adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3716adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝐹𝐷)
3818adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
3922adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
4024adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4126adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑍 ∈ (𝑉 ∖ { 0 }))
4231adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
4333adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
44 mapdh8i.yt . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
4544adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
46 mapdh8i.zt . . . 4 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇}))
4746adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇}))
4828adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
49 simpr 488 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
501, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 48, 49mapdh8i 39388 . 2 ((𝜑 ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) → (𝐼‘⟨𝑌, (𝐼‘⟨𝑋, 𝐹, 𝑌⟩), 𝑇⟩) = (𝐼‘⟨𝑍, (𝐼‘⟨𝑋, 𝐹, 𝑍⟩), 𝑇⟩))
5135, 50pm2.61dane 3038 1 (𝜑 → (𝐼‘⟨𝑌, (𝐼‘⟨𝑋, 𝐹, 𝑌⟩), 𝑇⟩) = (𝐼‘⟨𝑍, (𝐼‘⟨𝑋, 𝐹, 𝑍⟩), 𝑇⟩))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  Vcvv 3409   ∖ cdif 3857  ifcif 4423  {csn 4525  ⟨cotp 4533   ↦ cmpt 5115  ‘cfv 6339  ℩crio 7112  (class class class)co 7155  1st c1st 7696  2nd c2nd 7697  Basecbs 16546  0gc0g 16776  -gcsg 18176  LSpanclspn 19816  HLchlt 36952  LHypclh 37586  DVecHcdvh 38680  LCDualclcd 39188  mapdcmpd 39226 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-riotaBAD 36555 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-tpos 7907  df-undef 7954  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-sca 16644  df-vsca 16645  df-0g 16778  df-mre 16920  df-mrc 16921  df-acs 16923  df-proset 17609  df-poset 17627  df-plt 17639  df-lub 17655  df-glb 17656  df-join 17657  df-meet 17658  df-p0 17720  df-p1 17721  df-lat 17727  df-clat 17789  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-submnd 18028  df-grp 18177  df-minusg 18178  df-sbg 18179  df-subg 18348  df-cntz 18519  df-oppg 18546  df-lsm 18833  df-cmn 18980  df-abl 18981  df-mgp 19313  df-ur 19325  df-ring 19372  df-oppr 19449  df-dvdsr 19467  df-unit 19468  df-invr 19498  df-dvr 19509  df-drng 19577  df-lmod 19709  df-lss 19777  df-lsp 19817  df-lvec 19948  df-lsatoms 36578  df-lshyp 36579  df-lcv 36621  df-lfl 36660  df-lkr 36688  df-ldual 36726  df-oposet 36778  df-ol 36780  df-oml 36781  df-covers 36868  df-ats 36869  df-atl 36900  df-cvlat 36924  df-hlat 36953  df-llines 37100  df-lplanes 37101  df-lvols 37102  df-lines 37103  df-psubsp 37105  df-pmap 37106  df-padd 37398  df-lhyp 37590  df-laut 37591  df-ldil 37706  df-ltrn 37707  df-trl 37761  df-tgrp 38345  df-tendo 38357  df-edring 38359  df-dveca 38605  df-disoa 38631  df-dvech 38681  df-dib 38741  df-dic 38775  df-dih 38831  df-doch 38950  df-djh 38997  df-lcdual 39189  df-mapd 39227 This theorem is referenced by:  mapdh8  39390
 Copyright terms: Public domain W3C validator