Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8g Structured version   Visualization version   GIF version

Theorem mapdh8g 41774
Description: Part of Part (8) in [Baer] p. 48. Eliminate 𝑋 ∈ (𝑁‘{𝑌, 𝑇}). TODO: break out 𝑇0 in mapdh8e 41773 so we can share hypotheses. Also, look at hypothesis sharing for earlier mapdh8* and mapdh75* stuff. (Contributed by NM, 10-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8e.f (𝜑𝐹𝐷)
mapdh8e.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8e.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8e.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8e.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8e.xy (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh8e.xt (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
mapdh8e.yt (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
Assertion
Ref Expression
mapdh8g (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   𝑥,𝐼   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh8g
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . 3 = (-g𝑈)
5 mapdh8a.o . . 3 0 = (0g𝑈)
6 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . 3 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . 3 𝑅 = (-g𝐶)
10 mapdh8a.q . . 3 𝑄 = (0g𝐶)
11 mapdh8a.j . . 3 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8e.f . . . 4 (𝜑𝐹𝐷)
1716adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐹𝐷)
18 mapdh8e.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
1918adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdh8e.eg . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
2120adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
22 mapdh8e.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2322adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
24 mapdh8e.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2524adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
26 mapdh8e.t . . . 4 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
2726adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
28 mapdh8e.xy . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2928adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 mapdh8e.xt . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
3130adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
32 mapdh8e.yt . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
3332adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
34 simpr 484 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 34mapdh8e 41773 . 2 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
3614adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3716adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐹𝐷)
3818adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
3920adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
4022adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
4124adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4232adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
4326adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
44 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
451, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 36, 37, 38, 39, 40, 41, 42, 43, 44mapdh8a 41764 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
4635, 45pm2.61dan 812 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cdif 3913  ifcif 4490  {csn 4591  {cpr 4593  cotp 4599  cmpt 5190  cfv 6513  crio 7345  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  Basecbs 17185  0gc0g 17408  -gcsg 18873  LSpanclspn 20883  HLchlt 39338  LHypclh 39973  DVecHcdvh 41067  LCDualclcd 41575  mapdcmpd 41613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-riotaBAD 38941
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-undef 8254  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17410  df-mre 17553  df-mrc 17554  df-acs 17556  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cntz 19255  df-oppg 19284  df-lsm 19572  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-nzr 20428  df-rlreg 20609  df-domn 20610  df-drng 20646  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lvec 21016  df-lsatoms 38964  df-lshyp 38965  df-lcv 39007  df-lfl 39046  df-lkr 39074  df-ldual 39112  df-oposet 39164  df-ol 39166  df-oml 39167  df-covers 39254  df-ats 39255  df-atl 39286  df-cvlat 39310  df-hlat 39339  df-llines 39487  df-lplanes 39488  df-lvols 39489  df-lines 39490  df-psubsp 39492  df-pmap 39493  df-padd 39785  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148  df-tgrp 40732  df-tendo 40744  df-edring 40746  df-dveca 40992  df-disoa 41018  df-dvech 41068  df-dib 41128  df-dic 41162  df-dih 41218  df-doch 41337  df-djh 41384  df-lcdual 41576  df-mapd 41614
This theorem is referenced by:  mapdh8i  41775
  Copyright terms: Public domain W3C validator