| Mathbox for Norm Megill | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem32 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41521. (Contributed by NM, 10-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | 
| lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) | 
| lcfrlem17.p | ⊢ + = (+g‘𝑈) | 
| lcfrlem17.z | ⊢ 0 = (0g‘𝑈) | 
| lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) | 
| lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) | 
| lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | 
| lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | 
| lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | 
| lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | 
| lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) | 
| lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) | 
| lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) | 
| lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) | 
| lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | 
| lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) | 
| lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) | 
| lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) | 
| lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | 
| lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) | 
| lcfrlem30.m | ⊢ − = (-g‘𝐷) | 
| lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | 
| lcfrlem31.xi | ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) ≠ 𝑄) | 
| Ref | Expression | 
|---|---|
| lcfrlem32 | ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lcfrlem17.ne | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 2 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | lcfrlem17.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 4 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | lcfrlem17.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 6 | lcfrlem17.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
| 7 | lcfrlem17.z | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
| 8 | lcfrlem17.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 9 | lcfrlem17.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 10 | lcfrlem17.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 12 | lcfrlem17.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → 𝑋 ∈ (𝑉 ∖ { 0 })) | 
| 14 | lcfrlem17.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → 𝑌 ∈ (𝑉 ∖ { 0 })) | 
| 16 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | 
| 17 | lcfrlem22.b | . . . . 5 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
| 18 | lcfrlem24.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 19 | lcfrlem24.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 20 | lcfrlem24.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑆) | |
| 21 | lcfrlem24.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑆) | |
| 22 | lcfrlem24.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
| 23 | lcfrlem24.ib | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → 𝐼 ∈ 𝐵) | 
| 25 | lcfrlem24.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
| 26 | lcfrlem25.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑈) | |
| 27 | lcfrlem28.jn | . . . . . 6 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | 
| 29 | lcfrlem29.i | . . . . 5 ⊢ 𝐹 = (invr‘𝑆) | |
| 30 | lcfrlem30.m | . . . . 5 ⊢ − = (-g‘𝐷) | |
| 31 | lcfrlem30.c | . . . . 5 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
| 32 | lcfrlem31.xi | . . . . . 6 ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) ≠ 𝑄) | |
| 33 | 32 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → ((𝐽‘𝑋)‘𝐼) ≠ 𝑄) | 
| 34 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → 𝐶 = (0g‘𝐷)) | |
| 35 | 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 33, 34 | lcfrlem31 41509 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | 
| 36 | 35 | ex 412 | . . 3 ⊢ (𝜑 → (𝐶 = (0g‘𝐷) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) | 
| 37 | 36 | necon3d 2952 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → 𝐶 ≠ (0g‘𝐷))) | 
| 38 | 1, 37 | mpd 15 | 1 ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 ∖ cdif 3928 ∩ cin 3930 {csn 4606 {cpr 4608 ↦ cmpt 5205 ‘cfv 6540 ℩crio 7368 (class class class)co 7412 Basecbs 17228 +gcplusg 17272 .rcmulr 17273 Scalarcsca 17275 ·𝑠 cvsca 17276 0gc0g 17454 -gcsg 18921 invrcinvr 20354 LSpanclspn 20936 LSAtomsclsa 38909 LKerclk 39020 LDualcld 39058 HLchlt 39285 LHypclh 39920 DVecHcdvh 41014 ocHcoch 41283 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-riotaBAD 38888 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-om 7869 df-1st 7995 df-2nd 7996 df-tpos 8232 df-undef 8279 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-n0 12509 df-z 12596 df-uz 12860 df-fz 13529 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-sca 17288 df-vsca 17289 df-0g 17456 df-mre 17599 df-mrc 17600 df-acs 17602 df-proset 18309 df-poset 18328 df-plt 18343 df-lub 18359 df-glb 18360 df-join 18361 df-meet 18362 df-p0 18438 df-p1 18439 df-lat 18445 df-clat 18512 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-submnd 18765 df-grp 18922 df-minusg 18923 df-sbg 18924 df-subg 19109 df-cntz 19303 df-oppg 19332 df-lsm 19621 df-cmn 19767 df-abl 19768 df-mgp 20105 df-rng 20117 df-ur 20146 df-ring 20199 df-oppr 20301 df-dvdsr 20324 df-unit 20325 df-invr 20355 df-dvr 20368 df-nzr 20480 df-rlreg 20661 df-domn 20662 df-drng 20698 df-lmod 20827 df-lss 20897 df-lsp 20937 df-lvec 21069 df-lsatoms 38911 df-lshyp 38912 df-lcv 38954 df-lfl 38993 df-lkr 39021 df-ldual 39059 df-oposet 39111 df-ol 39113 df-oml 39114 df-covers 39201 df-ats 39202 df-atl 39233 df-cvlat 39257 df-hlat 39286 df-llines 39434 df-lplanes 39435 df-lvols 39436 df-lines 39437 df-psubsp 39439 df-pmap 39440 df-padd 39732 df-lhyp 39924 df-laut 39925 df-ldil 40040 df-ltrn 40041 df-trl 40095 df-tgrp 40679 df-tendo 40691 df-edring 40693 df-dveca 40939 df-disoa 40965 df-dvech 41015 df-dib 41075 df-dic 41109 df-dih 41165 df-doch 41284 df-djh 41331 | 
| This theorem is referenced by: lcfrlem34 41512 | 
| Copyright terms: Public domain | W3C validator |