![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem32 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41582. (Contributed by NM, 10-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
lcfrlem30.m | ⊢ − = (-g‘𝐷) |
lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
lcfrlem31.xi | ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) ≠ 𝑄) |
Ref | Expression |
---|---|
lcfrlem32 | ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.ne | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
2 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | lcfrlem17.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | lcfrlem17.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
6 | lcfrlem17.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
7 | lcfrlem17.z | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
8 | lcfrlem17.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
9 | lcfrlem17.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
10 | lcfrlem17.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
12 | lcfrlem17.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
14 | lcfrlem17.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
16 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
17 | lcfrlem22.b | . . . . 5 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
18 | lcfrlem24.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
19 | lcfrlem24.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
20 | lcfrlem24.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑆) | |
21 | lcfrlem24.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑆) | |
22 | lcfrlem24.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
23 | lcfrlem24.ib | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → 𝐼 ∈ 𝐵) |
25 | lcfrlem24.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
26 | lcfrlem25.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑈) | |
27 | lcfrlem28.jn | . . . . . 6 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
29 | lcfrlem29.i | . . . . 5 ⊢ 𝐹 = (invr‘𝑆) | |
30 | lcfrlem30.m | . . . . 5 ⊢ − = (-g‘𝐷) | |
31 | lcfrlem30.c | . . . . 5 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
32 | lcfrlem31.xi | . . . . . 6 ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) ≠ 𝑄) | |
33 | 32 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → ((𝐽‘𝑋)‘𝐼) ≠ 𝑄) |
34 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → 𝐶 = (0g‘𝐷)) | |
35 | 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 33, 34 | lcfrlem31 41570 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = (0g‘𝐷)) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
36 | 35 | ex 412 | . . 3 ⊢ (𝜑 → (𝐶 = (0g‘𝐷) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
37 | 36 | necon3d 2961 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → 𝐶 ≠ (0g‘𝐷))) |
38 | 1, 37 | mpd 15 | 1 ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ∖ cdif 3963 ∩ cin 3965 {csn 4634 {cpr 4636 ↦ cmpt 5234 ‘cfv 6569 ℩crio 7394 (class class class)co 7438 Basecbs 17254 +gcplusg 17307 .rcmulr 17308 Scalarcsca 17310 ·𝑠 cvsca 17311 0gc0g 17495 -gcsg 18975 invrcinvr 20413 LSpanclspn 20996 LSAtomsclsa 38970 LKerclk 39081 LDualcld 39119 HLchlt 39346 LHypclh 39981 DVecHcdvh 41075 ocHcoch 41344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-riotaBAD 38949 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-undef 8306 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-0g 17497 df-mre 17640 df-mrc 17641 df-acs 17643 df-proset 18361 df-poset 18380 df-plt 18397 df-lub 18413 df-glb 18414 df-join 18415 df-meet 18416 df-p0 18492 df-p1 18493 df-lat 18499 df-clat 18566 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-nzr 20539 df-rlreg 20720 df-domn 20721 df-drng 20757 df-lmod 20886 df-lss 20957 df-lsp 20997 df-lvec 21129 df-lsatoms 38972 df-lshyp 38973 df-lcv 39015 df-lfl 39054 df-lkr 39082 df-ldual 39120 df-oposet 39172 df-ol 39174 df-oml 39175 df-covers 39262 df-ats 39263 df-atl 39294 df-cvlat 39318 df-hlat 39347 df-llines 39495 df-lplanes 39496 df-lvols 39497 df-lines 39498 df-psubsp 39500 df-pmap 39501 df-padd 39793 df-lhyp 39985 df-laut 39986 df-ldil 40101 df-ltrn 40102 df-trl 40156 df-tgrp 40740 df-tendo 40752 df-edring 40754 df-dveca 41000 df-disoa 41026 df-dvech 41076 df-dib 41136 df-dic 41170 df-dih 41226 df-doch 41345 df-djh 41392 |
This theorem is referenced by: lcfrlem34 41573 |
Copyright terms: Public domain | W3C validator |