Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem34 Structured version   Visualization version   GIF version

Theorem lcfrlem34 40252
Description: Lemma for lcfr 40261. (Contributed by NM, 10-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
Assertion
Ref Expression
lcfrlem34 (𝜑𝐶 ≠ (0g𝐷))
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑘)   𝐴(𝑥,𝑤,𝑣,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣)   𝑈(𝑥,𝑤,𝑣,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   (𝑥,𝑤,𝑣,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑘)   0 (𝑤,𝑣,𝑘)

Proof of Theorem lcfrlem34
StepHypRef Expression
1 lcfrlem17.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfrlem17.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem17.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem17.v . . 3 𝑉 = (Base‘𝑈)
5 lcfrlem17.p . . 3 + = (+g𝑈)
6 lcfrlem17.z . . 3 0 = (0g𝑈)
7 lcfrlem17.n . . 3 𝑁 = (LSpan‘𝑈)
8 lcfrlem17.a . . 3 𝐴 = (LSAtoms‘𝑈)
9 lcfrlem17.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
109adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) = 𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 lcfrlem17.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1211adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) = 𝑄) → 𝑋 ∈ (𝑉 ∖ { 0 }))
13 lcfrlem17.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1413adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) = 𝑄) → 𝑌 ∈ (𝑉 ∖ { 0 }))
15 lcfrlem17.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
1615adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) = 𝑄) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
17 lcfrlem22.b . . 3 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
18 lcfrlem24.t . . 3 · = ( ·𝑠𝑈)
19 lcfrlem24.s . . 3 𝑆 = (Scalar‘𝑈)
20 lcfrlem24.q . . 3 𝑄 = (0g𝑆)
21 lcfrlem24.r . . 3 𝑅 = (Base‘𝑆)
22 lcfrlem24.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
23 lcfrlem24.ib . . . 4 (𝜑𝐼𝐵)
2423adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) = 𝑄) → 𝐼𝐵)
25 lcfrlem24.l . . 3 𝐿 = (LKer‘𝑈)
26 lcfrlem25.d . . 3 𝐷 = (LDual‘𝑈)
27 lcfrlem28.jn . . . 4 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
2827adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) = 𝑄) → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
29 lcfrlem29.i . . 3 𝐹 = (invr𝑆)
30 lcfrlem30.m . . 3 = (-g𝐷)
31 lcfrlem30.c . . 3 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
32 simpr 485 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) = 𝑄) → ((𝐽𝑋)‘𝐼) = 𝑄)
331, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 32lcfrlem33 40251 . 2 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) = 𝑄) → 𝐶 ≠ (0g𝐷))
349adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3511adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) ≠ 𝑄) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3613adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) ≠ 𝑄) → 𝑌 ∈ (𝑉 ∖ { 0 }))
3715adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) ≠ 𝑄) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
3823adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) ≠ 𝑄) → 𝐼𝐵)
3927adantr 481 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) ≠ 𝑄) → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
40 simpr 485 . . 3 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) ≠ 𝑄) → ((𝐽𝑋)‘𝐼) ≠ 𝑄)
411, 2, 3, 4, 5, 6, 7, 8, 34, 35, 36, 37, 17, 18, 19, 20, 21, 22, 38, 25, 26, 39, 29, 30, 31, 40lcfrlem32 40250 . 2 ((𝜑 ∧ ((𝐽𝑋)‘𝐼) ≠ 𝑄) → 𝐶 ≠ (0g𝐷))
4233, 41pm2.61dane 3028 1 (𝜑𝐶 ≠ (0g𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2939  wrex 3069  cdif 3941  cin 3943  {csn 4622  {cpr 4624  cmpt 5224  cfv 6532  crio 7348  (class class class)co 7393  Basecbs 17126  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17367  -gcsg 18796  invrcinvr 20153  LSpanclspn 20531  LSAtomsclsa 37649  LKerclk 37760  LDualcld 37798  HLchlt 38025  LHypclh 38660  DVecHcdvh 39754  ocHcoch 40023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-riotaBAD 37628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-tpos 8193  df-undef 8240  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17369  df-mre 17512  df-mrc 17513  df-acs 17515  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-subg 18975  df-cntz 19147  df-oppg 19174  df-lsm 19468  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-oppr 20102  df-dvdsr 20123  df-unit 20124  df-invr 20154  df-dvr 20165  df-drng 20267  df-lmod 20422  df-lss 20492  df-lsp 20532  df-lvec 20663  df-lsatoms 37651  df-lshyp 37652  df-lcv 37694  df-lfl 37733  df-lkr 37761  df-ldual 37799  df-oposet 37851  df-ol 37853  df-oml 37854  df-covers 37941  df-ats 37942  df-atl 37973  df-cvlat 37997  df-hlat 38026  df-llines 38174  df-lplanes 38175  df-lvols 38176  df-lines 38177  df-psubsp 38179  df-pmap 38180  df-padd 38472  df-lhyp 38664  df-laut 38665  df-ldil 38780  df-ltrn 38781  df-trl 38835  df-tgrp 39419  df-tendo 39431  df-edring 39433  df-dveca 39679  df-disoa 39705  df-dvech 39755  df-dib 39815  df-dic 39849  df-dih 39905  df-doch 40024  df-djh 40071
This theorem is referenced by:  lcfrlem35  40253
  Copyright terms: Public domain W3C validator