Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2w | Structured version Visualization version GIF version |
Description: Lemma for lclkr 39135. This is the same as lclkrlem2u 39129 and lclkrlem2u 39129 with the inequality hypotheses negated. When the sum of two functionals is zero at each generating vector, the kernel is the vector space and therefore closed. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2o.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2o.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2q.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2q.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
lclkrlem2v.j | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) |
lclkrlem2v.k | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) |
Ref | Expression |
---|---|
lclkrlem2w | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lclkrlem2o.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lclkrlem2o.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lclkrlem2m.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lclkrlem2o.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | dochoc1 38963 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
7 | lclkrlem2m.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
8 | lclkrlem2m.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
9 | lclkrlem2m.q | . . . . 5 ⊢ × = (.r‘𝑆) | |
10 | lclkrlem2m.z | . . . . 5 ⊢ 0 = (0g‘𝑆) | |
11 | lclkrlem2m.i | . . . . 5 ⊢ 𝐼 = (invr‘𝑆) | |
12 | lclkrlem2m.m | . . . . 5 ⊢ − = (-g‘𝑈) | |
13 | lclkrlem2m.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
14 | lclkrlem2m.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑈) | |
15 | lclkrlem2m.p | . . . . 5 ⊢ + = (+g‘𝐷) | |
16 | lclkrlem2m.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
17 | lclkrlem2m.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
18 | lclkrlem2m.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
19 | lclkrlem2m.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
20 | lclkrlem2n.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
21 | lclkrlem2n.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
22 | lclkrlem2o.a | . . . . 5 ⊢ ⊕ = (LSSum‘𝑈) | |
23 | lclkrlem2q.le | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
24 | lclkrlem2q.lg | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
25 | lclkrlem2v.j | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) | |
26 | lclkrlem2v.k | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) | |
27 | 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 1, 3, 2, 22, 5, 23, 24, 25, 26 | lclkrlem2v 39130 | . . . 4 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = 𝑉) |
28 | 27 | fveq2d 6666 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘(𝐸 + 𝐺))) = ( ⊥ ‘𝑉)) |
29 | 28 | fveq2d 6666 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = ( ⊥ ‘( ⊥ ‘𝑉))) |
30 | 6, 29, 27 | 3eqtr4d 2803 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {csn 4525 ‘cfv 6339 (class class class)co 7155 Basecbs 16546 +gcplusg 16628 .rcmulr 16629 Scalarcsca 16631 ·𝑠 cvsca 16632 0gc0g 16776 -gcsg 18176 LSSumclsm 18831 invrcinvr 19497 LSpanclspn 19816 LFnlclfn 36659 LKerclk 36687 LDualcld 36725 HLchlt 36952 LHypclh 37586 DVecHcdvh 38680 ocHcoch 38949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-riotaBAD 36555 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-om 7585 df-1st 7698 df-2nd 7699 df-tpos 7907 df-undef 7954 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-sca 16644 df-vsca 16645 df-0g 16778 df-mre 16920 df-mrc 16921 df-acs 16923 df-proset 17609 df-poset 17627 df-plt 17639 df-lub 17655 df-glb 17656 df-join 17657 df-meet 17658 df-p0 17720 df-p1 17721 df-lat 17727 df-clat 17789 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-submnd 18028 df-grp 18177 df-minusg 18178 df-sbg 18179 df-subg 18348 df-cntz 18519 df-oppg 18546 df-lsm 18833 df-cmn 18980 df-abl 18981 df-mgp 19313 df-ur 19325 df-ring 19372 df-oppr 19449 df-dvdsr 19467 df-unit 19468 df-invr 19498 df-dvr 19509 df-drng 19577 df-lmod 19709 df-lss 19777 df-lsp 19817 df-lvec 19948 df-lsatoms 36578 df-lcv 36621 df-lfl 36660 df-lkr 36688 df-ldual 36726 df-oposet 36778 df-ol 36780 df-oml 36781 df-covers 36868 df-ats 36869 df-atl 36900 df-cvlat 36924 df-hlat 36953 df-llines 37100 df-lplanes 37101 df-lvols 37102 df-lines 37103 df-psubsp 37105 df-pmap 37106 df-padd 37398 df-lhyp 37590 df-laut 37591 df-ldil 37706 df-ltrn 37707 df-trl 37761 df-tgrp 38345 df-tendo 38357 df-edring 38359 df-dveca 38605 df-disoa 38631 df-dvech 38681 df-dib 38741 df-dic 38775 df-dih 38831 df-doch 38950 df-djh 38997 |
This theorem is referenced by: lclkrlem2x 39132 |
Copyright terms: Public domain | W3C validator |