Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6N | Structured version Visualization version GIF version |
Description: Part (6) of [Baer] p. 47 line 6. Note that we use ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) which is equivalent to Baer's "Fx ∩ (Fy + Fz)" by lspdisjb 20459. TODO: If disjoint variable conditions with 𝐼 and 𝜑 become a problem later, use cbv* theorems on 𝐼 variables here to get rid of them. Maybe reorder hypotheses in lemmas to the more consistent order of this theorem, so they can be shared with this theorem. TODO: may be deleted (with its lemmas), if not needed, in view of hdmap1l6 40047. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh6.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh6.p | ⊢ + = (+g‘𝑈) |
mapdh6.s | ⊢ − = (-g‘𝑈) |
mapdh6.o | ⊢ 0 = (0g‘𝑈) |
mapdh6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh6.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh6.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh6.a | ⊢ ✚ = (+g‘𝐶) |
mapdh6.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh6.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh6.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh6.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh6.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh6.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh6.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh6.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdh6.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
mapdh6.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
mapdh6.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
Ref | Expression |
---|---|
mapdh6N | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh6.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh6.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh6.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | mapdh6.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
5 | mapdh6.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | mapdh6.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
7 | mapdh6.s | . 2 ⊢ − = (-g‘𝑈) | |
8 | mapdh6.o | . 2 ⊢ 0 = (0g‘𝑈) | |
9 | mapdh6.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
10 | mapdh6.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
11 | mapdh6.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
12 | mapdh6.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
13 | mapdh6.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
14 | mapdh6.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdh6.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | mapdh6.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
17 | mapdh6.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
18 | mapdh6.p | . 2 ⊢ + = (+g‘𝑈) | |
19 | mapdh6.a | . 2 ⊢ ✚ = (+g‘𝐶) | |
20 | mapdh6.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
21 | mapdh6.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
22 | mapdh6.xn | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | mapdh6kN 39972 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∖ cdif 3893 ifcif 4469 {csn 4569 {cpr 4571 〈cotp 4577 ↦ cmpt 5168 ‘cfv 6463 ℩crio 7269 (class class class)co 7313 1st c1st 7872 2nd c2nd 7873 Basecbs 16979 +gcplusg 17029 0gc0g 17217 -gcsg 18646 LSpanclspn 20304 HLchlt 37576 LHypclh 38210 DVecHcdvh 39304 LCDualclcd 39812 mapdcmpd 39850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-riotaBAD 37179 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-ot 4578 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-om 7756 df-1st 7874 df-2nd 7875 df-tpos 8087 df-undef 8134 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-sca 17045 df-vsca 17046 df-0g 17219 df-mre 17362 df-mrc 17363 df-acs 17365 df-proset 18080 df-poset 18098 df-plt 18115 df-lub 18131 df-glb 18132 df-join 18133 df-meet 18134 df-p0 18210 df-p1 18211 df-lat 18217 df-clat 18284 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-submnd 18498 df-grp 18647 df-minusg 18648 df-sbg 18649 df-subg 18819 df-cntz 18990 df-oppg 19017 df-lsm 19308 df-cmn 19455 df-abl 19456 df-mgp 19788 df-ur 19805 df-ring 19852 df-oppr 19929 df-dvdsr 19950 df-unit 19951 df-invr 19981 df-dvr 19992 df-drng 20064 df-lmod 20196 df-lss 20265 df-lsp 20305 df-lvec 20436 df-lsatoms 37202 df-lshyp 37203 df-lcv 37245 df-lfl 37284 df-lkr 37312 df-ldual 37350 df-oposet 37402 df-ol 37404 df-oml 37405 df-covers 37492 df-ats 37493 df-atl 37524 df-cvlat 37548 df-hlat 37577 df-llines 37724 df-lplanes 37725 df-lvols 37726 df-lines 37727 df-psubsp 37729 df-pmap 37730 df-padd 38022 df-lhyp 38214 df-laut 38215 df-ldil 38330 df-ltrn 38331 df-trl 38385 df-tgrp 38969 df-tendo 38981 df-edring 38983 df-dveca 39229 df-disoa 39255 df-dvech 39305 df-dib 39365 df-dic 39399 df-dih 39455 df-doch 39574 df-djh 39621 df-lcdual 39813 df-mapd 39851 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |