Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnsubadd2 | Structured version Visualization version GIF version |
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
ovnsubadd2.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnsubadd2.a | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
ovnsubadd2.b | ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
Ref | Expression |
---|---|
ovnsubadd2 | ⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∪ 𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnsubadd2.x | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | ovnsubadd2.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) | |
3 | ovnsubadd2.b | . 2 ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) | |
4 | eqeq1 2762 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1)) | |
5 | eqeq1 2762 | . . . . 5 ⊢ (𝑚 = 𝑛 → (𝑚 = 2 ↔ 𝑛 = 2)) | |
6 | 5 | ifbid 4443 | . . . 4 ⊢ (𝑚 = 𝑛 → if(𝑚 = 2, 𝐵, ∅) = if(𝑛 = 2, 𝐵, ∅)) |
7 | 4, 6 | ifbieq2d 4446 | . . 3 ⊢ (𝑚 = 𝑛 → if(𝑚 = 1, 𝐴, if(𝑚 = 2, 𝐵, ∅)) = if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅))) |
8 | 7 | cbvmptv 5135 | . 2 ⊢ (𝑚 ∈ ℕ ↦ if(𝑚 = 1, 𝐴, if(𝑚 = 2, 𝐵, ∅))) = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅))) |
9 | 1, 2, 3, 8 | ovnsubadd2lem 43650 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∪ 𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∪ cun 3856 ⊆ wss 3858 ∅c0 4225 ifcif 4420 class class class wbr 5032 ↦ cmpt 5112 ‘cfv 6335 (class class class)co 7150 ↑m cmap 8416 Fincfn 8527 ℝcr 10574 1c1 10576 ≤ cle 10714 ℕcn 11674 2c2 11729 +𝑒 cxad 12546 voln*covoln 43541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cc 9895 ax-ac2 9923 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-disj 4998 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-map 8418 df-pm 8419 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fi 8908 df-sup 8939 df-inf 8940 df-oi 9007 df-dju 9363 df-card 9401 df-acn 9404 df-ac 9576 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ioo 12783 df-ico 12785 df-icc 12786 df-fz 12940 df-fzo 13083 df-fl 13211 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-rlim 14894 df-sum 15091 df-prod 15308 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-rest 16754 df-0g 16773 df-topgen 16775 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-subg 18343 df-cmn 18975 df-abl 18976 df-mgp 19308 df-ur 19320 df-ring 19367 df-cring 19368 df-oppr 19444 df-dvdsr 19462 df-unit 19463 df-invr 19493 df-dvr 19504 df-drng 19572 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-cnfld 20167 df-top 21594 df-topon 21611 df-bases 21646 df-cmp 22087 df-ovol 24164 df-vol 24165 df-sumge0 43368 df-ovoln 43542 |
This theorem is referenced by: ovnsplit 43653 |
Copyright terms: Public domain | W3C validator |