| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vr1nz | Structured version Visualization version GIF version | ||
| Description: A univariate polynomial variable cannot be the zero polynomial. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| vr1nz.x | ⊢ 𝑋 = (var1‘𝑈) |
| vr1nz.z | ⊢ 𝑍 = (0g‘𝑃) |
| vr1nz.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| vr1nz.p | ⊢ 𝑃 = (Poly1‘𝑈) |
| vr1nz.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| vr1nz.1 | ⊢ (𝜑 → 𝑆 ∈ NzRing) |
| vr1nz.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| vr1nz | ⊢ (𝜑 → 𝑋 ≠ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1nz.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ NzRing) | |
| 2 | eqid 2729 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 3 | eqid 2729 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 4 | 2, 3 | nzrnz 20435 | . . 3 ⊢ (𝑆 ∈ NzRing → (1r‘𝑆) ≠ (0g‘𝑆)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (1r‘𝑆) ≠ (0g‘𝑆)) |
| 6 | vr1nz.s | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 7 | 6 | crnggrpd 20167 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 8 | 7 | grpmndd 18860 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Mnd) |
| 9 | vr1nz.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 10 | subrgsubg 20497 | . . . . . . . . . 10 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ (SubGrp‘𝑆)) | |
| 11 | 3 | subg0cl 19048 | . . . . . . . . . 10 ⊢ (𝑅 ∈ (SubGrp‘𝑆) → (0g‘𝑆) ∈ 𝑅) |
| 12 | 9, 10, 11 | 3syl 18 | . . . . . . . . 9 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝑅) |
| 13 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 14 | 13 | subrgss 20492 | . . . . . . . . . 10 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ (Base‘𝑆)) |
| 15 | 9, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ⊆ (Base‘𝑆)) |
| 16 | vr1nz.u | . . . . . . . . . 10 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 17 | 16, 13, 3 | ress0g 18671 | . . . . . . . . 9 ⊢ ((𝑆 ∈ Mnd ∧ (0g‘𝑆) ∈ 𝑅 ∧ 𝑅 ⊆ (Base‘𝑆)) → (0g‘𝑆) = (0g‘𝑈)) |
| 18 | 8, 12, 15, 17 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 19 | 18 | fveq2d 6844 | . . . . . . 7 ⊢ (𝜑 → ((algSc‘𝑃)‘(0g‘𝑆)) = ((algSc‘𝑃)‘(0g‘𝑈))) |
| 20 | 19 | fveq2d 6844 | . . . . . 6 ⊢ (𝜑 → ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆))) = ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑈)))) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆))) = ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑈)))) |
| 22 | 16 | subrgring 20494 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 23 | vr1nz.p | . . . . . . . . . 10 ⊢ 𝑃 = (Poly1‘𝑈) | |
| 24 | eqid 2729 | . . . . . . . . . 10 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 25 | eqid 2729 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 26 | vr1nz.z | . . . . . . . . . 10 ⊢ 𝑍 = (0g‘𝑃) | |
| 27 | 23, 24, 25, 26 | ply1scl0 22209 | . . . . . . . . 9 ⊢ (𝑈 ∈ Ring → ((algSc‘𝑃)‘(0g‘𝑈)) = 𝑍) |
| 28 | 9, 22, 27 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → ((algSc‘𝑃)‘(0g‘𝑈)) = 𝑍) |
| 29 | 28 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((algSc‘𝑃)‘(0g‘𝑈)) = 𝑍) |
| 30 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → 𝑋 = 𝑍) | |
| 31 | 29, 30 | eqtr4d 2767 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((algSc‘𝑃)‘(0g‘𝑈)) = 𝑋) |
| 32 | 31 | fveq2d 6844 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑈))) = ((𝑆 evalSub1 𝑅)‘𝑋)) |
| 33 | eqid 2729 | . . . . . . 7 ⊢ (𝑆 evalSub1 𝑅) = (𝑆 evalSub1 𝑅) | |
| 34 | vr1nz.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑈) | |
| 35 | 33, 34, 16, 13, 6, 9 | evls1var 22258 | . . . . . 6 ⊢ (𝜑 → ((𝑆 evalSub1 𝑅)‘𝑋) = ( I ↾ (Base‘𝑆))) |
| 36 | 35 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((𝑆 evalSub1 𝑅)‘𝑋) = ( I ↾ (Base‘𝑆))) |
| 37 | 21, 32, 36 | 3eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆))) = ( I ↾ (Base‘𝑆))) |
| 38 | 37 | fveq1d 6842 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → (((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆)))‘(1r‘𝑆)) = (( I ↾ (Base‘𝑆))‘(1r‘𝑆))) |
| 39 | 6 | crngringd 20166 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 40 | 13, 2, 39 | ringidcld 20186 | . . . . 5 ⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 41 | 33, 23, 16, 13, 24, 6, 9, 12, 40 | evls1scafv 22286 | . . . 4 ⊢ (𝜑 → (((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆)))‘(1r‘𝑆)) = (0g‘𝑆)) |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → (((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆)))‘(1r‘𝑆)) = (0g‘𝑆)) |
| 43 | fvresi 7129 | . . . . 5 ⊢ ((1r‘𝑆) ∈ (Base‘𝑆) → (( I ↾ (Base‘𝑆))‘(1r‘𝑆)) = (1r‘𝑆)) | |
| 44 | 40, 43 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ (Base‘𝑆))‘(1r‘𝑆)) = (1r‘𝑆)) |
| 45 | 44 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → (( I ↾ (Base‘𝑆))‘(1r‘𝑆)) = (1r‘𝑆)) |
| 46 | 38, 42, 45 | 3eqtr3rd 2773 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → (1r‘𝑆) = (0g‘𝑆)) |
| 47 | 5, 46 | mteqand 3016 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3911 I cid 5525 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 0gc0g 17378 Mndcmnd 18643 SubGrpcsubg 19034 1rcur 20101 Ringcrg 20153 CRingccrg 20154 NzRingcnzr 20432 SubRingcsubrg 20489 algSccascl 21794 var1cv1 22093 Poly1cpl1 22094 evalSub1 ces1 22233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-rhm 20392 df-nzr 20433 df-subrng 20466 df-subrg 20490 df-lmod 20800 df-lss 20870 df-lsp 20910 df-assa 21795 df-asp 21796 df-ascl 21797 df-psr 21851 df-mvr 21852 df-mpl 21853 df-opsr 21855 df-evls 22014 df-evl 22015 df-psr1 22097 df-vr1 22098 df-ply1 22099 df-evls1 22235 df-evl1 22236 |
| This theorem is referenced by: cos9thpiminply 33771 |
| Copyright terms: Public domain | W3C validator |