| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vr1nz | Structured version Visualization version GIF version | ||
| Description: A univariate polynomial variable cannot be the zero polynomial. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| vr1nz.x | ⊢ 𝑋 = (var1‘𝑈) |
| vr1nz.z | ⊢ 𝑍 = (0g‘𝑃) |
| vr1nz.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| vr1nz.p | ⊢ 𝑃 = (Poly1‘𝑈) |
| vr1nz.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| vr1nz.1 | ⊢ (𝜑 → 𝑆 ∈ NzRing) |
| vr1nz.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| vr1nz | ⊢ (𝜑 → 𝑋 ≠ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1nz.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ NzRing) | |
| 2 | eqid 2735 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 3 | eqid 2735 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 4 | 2, 3 | nzrnz 20473 | . . 3 ⊢ (𝑆 ∈ NzRing → (1r‘𝑆) ≠ (0g‘𝑆)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (1r‘𝑆) ≠ (0g‘𝑆)) |
| 6 | vr1nz.s | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 7 | 6 | crnggrpd 20205 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 8 | 7 | grpmndd 18927 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Mnd) |
| 9 | vr1nz.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 10 | subrgsubg 20535 | . . . . . . . . . 10 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ (SubGrp‘𝑆)) | |
| 11 | 3 | subg0cl 19115 | . . . . . . . . . 10 ⊢ (𝑅 ∈ (SubGrp‘𝑆) → (0g‘𝑆) ∈ 𝑅) |
| 12 | 9, 10, 11 | 3syl 18 | . . . . . . . . 9 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝑅) |
| 13 | eqid 2735 | . . . . . . . . . . 11 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 14 | 13 | subrgss 20530 | . . . . . . . . . 10 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ (Base‘𝑆)) |
| 15 | 9, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ⊆ (Base‘𝑆)) |
| 16 | vr1nz.u | . . . . . . . . . 10 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 17 | 16, 13, 3 | ress0g 18738 | . . . . . . . . 9 ⊢ ((𝑆 ∈ Mnd ∧ (0g‘𝑆) ∈ 𝑅 ∧ 𝑅 ⊆ (Base‘𝑆)) → (0g‘𝑆) = (0g‘𝑈)) |
| 18 | 8, 12, 15, 17 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 19 | 18 | fveq2d 6879 | . . . . . . 7 ⊢ (𝜑 → ((algSc‘𝑃)‘(0g‘𝑆)) = ((algSc‘𝑃)‘(0g‘𝑈))) |
| 20 | 19 | fveq2d 6879 | . . . . . 6 ⊢ (𝜑 → ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆))) = ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑈)))) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆))) = ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑈)))) |
| 22 | 16 | subrgring 20532 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 23 | vr1nz.p | . . . . . . . . . 10 ⊢ 𝑃 = (Poly1‘𝑈) | |
| 24 | eqid 2735 | . . . . . . . . . 10 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 25 | eqid 2735 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 26 | vr1nz.z | . . . . . . . . . 10 ⊢ 𝑍 = (0g‘𝑃) | |
| 27 | 23, 24, 25, 26 | ply1scl0 22225 | . . . . . . . . 9 ⊢ (𝑈 ∈ Ring → ((algSc‘𝑃)‘(0g‘𝑈)) = 𝑍) |
| 28 | 9, 22, 27 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → ((algSc‘𝑃)‘(0g‘𝑈)) = 𝑍) |
| 29 | 28 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((algSc‘𝑃)‘(0g‘𝑈)) = 𝑍) |
| 30 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → 𝑋 = 𝑍) | |
| 31 | 29, 30 | eqtr4d 2773 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((algSc‘𝑃)‘(0g‘𝑈)) = 𝑋) |
| 32 | 31 | fveq2d 6879 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑈))) = ((𝑆 evalSub1 𝑅)‘𝑋)) |
| 33 | eqid 2735 | . . . . . . 7 ⊢ (𝑆 evalSub1 𝑅) = (𝑆 evalSub1 𝑅) | |
| 34 | vr1nz.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑈) | |
| 35 | 33, 34, 16, 13, 6, 9 | evls1var 22274 | . . . . . 6 ⊢ (𝜑 → ((𝑆 evalSub1 𝑅)‘𝑋) = ( I ↾ (Base‘𝑆))) |
| 36 | 35 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((𝑆 evalSub1 𝑅)‘𝑋) = ( I ↾ (Base‘𝑆))) |
| 37 | 21, 32, 36 | 3eqtrd 2774 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → ((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆))) = ( I ↾ (Base‘𝑆))) |
| 38 | 37 | fveq1d 6877 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → (((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆)))‘(1r‘𝑆)) = (( I ↾ (Base‘𝑆))‘(1r‘𝑆))) |
| 39 | 6 | crngringd 20204 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 40 | 13, 2, 39 | ringidcld 20224 | . . . . 5 ⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 41 | 33, 23, 16, 13, 24, 6, 9, 12, 40 | evls1scafv 22302 | . . . 4 ⊢ (𝜑 → (((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆)))‘(1r‘𝑆)) = (0g‘𝑆)) |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → (((𝑆 evalSub1 𝑅)‘((algSc‘𝑃)‘(0g‘𝑆)))‘(1r‘𝑆)) = (0g‘𝑆)) |
| 43 | fvresi 7164 | . . . . 5 ⊢ ((1r‘𝑆) ∈ (Base‘𝑆) → (( I ↾ (Base‘𝑆))‘(1r‘𝑆)) = (1r‘𝑆)) | |
| 44 | 40, 43 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ (Base‘𝑆))‘(1r‘𝑆)) = (1r‘𝑆)) |
| 45 | 44 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → (( I ↾ (Base‘𝑆))‘(1r‘𝑆)) = (1r‘𝑆)) |
| 46 | 38, 42, 45 | 3eqtr3rd 2779 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑍) → (1r‘𝑆) = (0g‘𝑆)) |
| 47 | 5, 46 | mteqand 3023 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ⊆ wss 3926 I cid 5547 ↾ cres 5656 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 ↾s cress 17249 0gc0g 17451 Mndcmnd 18710 SubGrpcsubg 19101 1rcur 20139 Ringcrg 20191 CRingccrg 20192 NzRingcnzr 20470 SubRingcsubrg 20527 algSccascl 21810 var1cv1 22109 Poly1cpl1 22110 evalSub1 ces1 22249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-ofr 7670 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-sup 9452 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-fzo 13670 df-seq 14018 df-hash 14347 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-hom 17293 df-cco 17294 df-0g 17453 df-gsum 17454 df-prds 17459 df-pws 17461 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-mulg 19049 df-subg 19104 df-ghm 19194 df-cntz 19298 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-srg 20145 df-ring 20193 df-cring 20194 df-rhm 20430 df-nzr 20471 df-subrng 20504 df-subrg 20528 df-lmod 20817 df-lss 20887 df-lsp 20927 df-assa 21811 df-asp 21812 df-ascl 21813 df-psr 21867 df-mvr 21868 df-mpl 21869 df-opsr 21871 df-evls 22030 df-evl 22031 df-psr1 22113 df-vr1 22114 df-ply1 22115 df-evls1 22251 df-evl1 22252 |
| This theorem is referenced by: cos9thpiminply 33768 |
| Copyright terms: Public domain | W3C validator |