Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem38 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39255. Combine lcfrlem27 39239 and lcfrlem37 39249. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem38.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem38.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem38.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem38.p | ⊢ + = (+g‘𝑈) |
lcfrlem38.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfrlem38.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem38.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem38.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
lcfrlem38.c | ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcfrlem38.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem38.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem38.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
lcfrlem38.gs | ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
lcfrlem38.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem38.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
lcfrlem38.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem38.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
lcfrlem38.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
lcfrlem38.sp | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem38.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem38.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem38.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem38.n | ⊢ (𝜑 → 𝐼 ≠ 0 ) |
lcfrlem38.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem38.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem38.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem38.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem38.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
Ref | Expression |
---|---|
lcfrlem38 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem38.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem38.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcfrlem38.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcfrlem38.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfrlem38.p | . . 3 ⊢ + = (+g‘𝑈) | |
6 | lcfrlem38.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
7 | lcfrlem38.sp | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
8 | eqid 2739 | . . 3 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
9 | lcfrlem38.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | 9 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | lcfrlem38.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
12 | lcfrlem38.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
13 | lcfrlem38.q | . . . . . 6 ⊢ 𝑄 = (LSubSp‘𝐷) | |
14 | lcfrlem38.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
15 | lcfrlem38.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
16 | lcfrlem38.xe | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
17 | 1, 2, 3, 4, 11, 12, 13, 14, 9, 15, 16 | lcfrlem4 39215 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
18 | lcfrlem38.x | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
19 | eldifsn 4685 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
20 | 17, 18, 19 | sylanbrc 586 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
21 | 20 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
22 | lcfrlem38.ye | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
23 | 1, 2, 3, 4, 11, 12, 13, 14, 9, 15, 22 | lcfrlem4 39215 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
24 | lcfrlem38.y | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
25 | eldifsn 4685 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) | |
26 | 23, 24, 25 | sylanbrc 586 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
27 | 26 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
28 | lcfrlem38.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
29 | 28 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
30 | lcfrlem38.b | . . 3 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
31 | lcfrlem38.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
32 | lcfrlem38.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
33 | eqid 2739 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
34 | lcfrlem38.r | . . 3 ⊢ 𝑅 = (Base‘𝑆) | |
35 | lcfrlem38.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
36 | lcfrlem38.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
37 | 36 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐼 ∈ 𝐵) |
38 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) | |
39 | lcfrlem38.n | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 0 ) | |
40 | 39 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐼 ≠ 0 ) |
41 | 15, 13 | eleqtrdi 2844 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) |
42 | 41 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐺 ∈ (LSubSp‘𝐷)) |
43 | lcfrlem38.gs | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) | |
44 | lcfrlem38.c | . . . . 5 ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
45 | 43, 44 | sseqtrdi 3937 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
46 | 45 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
47 | 16 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑋 ∈ 𝐸) |
48 | 22 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑌 ∈ 𝐸) |
49 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 21, 27, 29, 30, 31, 32, 33, 34, 35, 37, 11, 12, 38, 40, 42, 46, 14, 47, 48 | lcfrlem27 39239 | . 2 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝑋 + 𝑌) ∈ 𝐸) |
50 | 9 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
51 | 20 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
52 | 26 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
53 | 28 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
54 | 36 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐼 ∈ 𝐵) |
55 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) | |
56 | eqid 2739 | . . 3 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
57 | eqid 2739 | . . 3 ⊢ (-g‘𝐷) = (-g‘𝐷) | |
58 | eqid 2739 | . . 3 ⊢ ((𝐽‘𝑋)(-g‘𝐷)((((invr‘𝑆)‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) = ((𝐽‘𝑋)(-g‘𝐷)((((invr‘𝑆)‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
59 | 41 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐺 ∈ (LSubSp‘𝐷)) |
60 | 45 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
61 | 16 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑋 ∈ 𝐸) |
62 | 22 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑌 ∈ 𝐸) |
63 | 1, 2, 3, 4, 5, 6, 7, 8, 50, 51, 52, 53, 30, 31, 32, 33, 34, 35, 54, 11, 12, 55, 56, 57, 58, 59, 60, 14, 61, 62 | lcfrlem37 39249 | . 2 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝑋 + 𝑌) ∈ 𝐸) |
64 | 49, 63 | pm2.61dane 3022 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∃wrex 3055 {crab 3058 ∖ cdif 3850 ∩ cin 3852 ⊆ wss 3853 {csn 4526 {cpr 4528 ∪ ciun 4891 ↦ cmpt 5120 ‘cfv 6350 ℩crio 7139 (class class class)co 7183 Basecbs 16599 +gcplusg 16681 .rcmulr 16682 Scalarcsca 16684 ·𝑠 cvsca 16685 0gc0g 16829 -gcsg 18234 invrcinvr 19556 LSubSpclss 19835 LSpanclspn 19875 LSAtomsclsa 36644 LFnlclfn 36727 LKerclk 36755 LDualcld 36793 HLchlt 37020 LHypclh 37654 DVecHcdvh 38748 ocHcoch 39017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 ax-riotaBAD 36623 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-iin 4894 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-of 7438 df-om 7613 df-1st 7727 df-2nd 7728 df-tpos 7934 df-undef 7981 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-1o 8144 df-er 8333 df-map 8452 df-en 8569 df-dom 8570 df-sdom 8571 df-fin 8572 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-nn 11730 df-2 11792 df-3 11793 df-4 11794 df-5 11795 df-6 11796 df-n0 11990 df-z 12076 df-uz 12338 df-fz 12995 df-struct 16601 df-ndx 16602 df-slot 16603 df-base 16605 df-sets 16606 df-ress 16607 df-plusg 16694 df-mulr 16695 df-sca 16697 df-vsca 16698 df-0g 16831 df-mre 16973 df-mrc 16974 df-acs 16976 df-proset 17667 df-poset 17685 df-plt 17697 df-lub 17713 df-glb 17714 df-join 17715 df-meet 17716 df-p0 17778 df-p1 17779 df-lat 17785 df-clat 17847 df-mgm 17981 df-sgrp 18030 df-mnd 18041 df-submnd 18086 df-grp 18235 df-minusg 18236 df-sbg 18237 df-subg 18407 df-cntz 18578 df-oppg 18605 df-lsm 18892 df-cmn 19039 df-abl 19040 df-mgp 19372 df-ur 19384 df-ring 19431 df-oppr 19508 df-dvdsr 19526 df-unit 19527 df-invr 19557 df-dvr 19568 df-drng 19636 df-lmod 19768 df-lss 19836 df-lsp 19876 df-lvec 20007 df-lsatoms 36646 df-lshyp 36647 df-lcv 36689 df-lfl 36728 df-lkr 36756 df-ldual 36794 df-oposet 36846 df-ol 36848 df-oml 36849 df-covers 36936 df-ats 36937 df-atl 36968 df-cvlat 36992 df-hlat 37021 df-llines 37168 df-lplanes 37169 df-lvols 37170 df-lines 37171 df-psubsp 37173 df-pmap 37174 df-padd 37466 df-lhyp 37658 df-laut 37659 df-ldil 37774 df-ltrn 37775 df-trl 37829 df-tgrp 38413 df-tendo 38425 df-edring 38427 df-dveca 38673 df-disoa 38699 df-dvech 38749 df-dib 38809 df-dic 38843 df-dih 38899 df-doch 39018 df-djh 39065 |
This theorem is referenced by: lcfrlem39 39251 |
Copyright terms: Public domain | W3C validator |