Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem38 Structured version   Visualization version   GIF version

Theorem lcfrlem38 41541
Description: Lemma for lcfr 41546. Combine lcfrlem27 41530 and lcfrlem37 41540. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
lcfrlem38.z 0 = (0g𝑈)
lcfrlem38.x (𝜑𝑋0 )
lcfrlem38.y (𝜑𝑌0 )
lcfrlem38.sp 𝑁 = (LSpan‘𝑈)
lcfrlem38.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem38.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem38.i (𝜑𝐼𝐵)
lcfrlem38.n (𝜑𝐼0 )
lcfrlem38.v 𝑉 = (Base‘𝑈)
lcfrlem38.t · = ( ·𝑠𝑈)
lcfrlem38.s 𝑆 = (Scalar‘𝑈)
lcfrlem38.r 𝑅 = (Base‘𝑆)
lcfrlem38.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
Assertion
Ref Expression
lcfrlem38 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝑔,𝑘,𝐷   𝑔,𝐺,𝑘   𝑔,𝐼,𝑘   𝑓,𝑔,𝑘,𝐽   𝑓,𝐿,𝑔,𝑘   𝑣,𝑓,𝑤,𝑥, ,𝑔,𝑘   + ,𝑓,𝑔,𝑘,𝑣,𝑤,𝑥   𝑅,𝑓,𝑘,𝑣,𝑥   𝑆,𝑔,𝑘   · ,𝑓,𝑘,𝑣,𝑤,𝑥   𝑈,𝑓,𝑔,𝑘,𝑣,𝑤,𝑥   𝑓,𝑉,𝑔,𝑣,𝑥   𝑓,𝑋,𝑔,𝑘,𝑣,𝑤,𝑥   𝑓,𝑌,𝑔,𝑘,𝑣,𝑤,𝑥   0 ,𝑓,𝑔,𝑘,𝑥   𝜑,𝑔,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐵(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓)   · (𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑓)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣)   𝑁(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣)

Proof of Theorem lcfrlem38
StepHypRef Expression
1 lcfrlem38.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfrlem38.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem38.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem38.v . . 3 𝑉 = (Base‘𝑈)
5 lcfrlem38.p . . 3 + = (+g𝑈)
6 lcfrlem38.z . . 3 0 = (0g𝑈)
7 lcfrlem38.sp . . 3 𝑁 = (LSpan‘𝑈)
8 eqid 2734 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
9 lcfrlem38.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
109adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 lcfrlem38.l . . . . . 6 𝐿 = (LKer‘𝑈)
12 lcfrlem38.d . . . . . 6 𝐷 = (LDual‘𝑈)
13 lcfrlem38.q . . . . . 6 𝑄 = (LSubSp‘𝐷)
14 lcfrlem38.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
15 lcfrlem38.g . . . . . 6 (𝜑𝐺𝑄)
16 lcfrlem38.xe . . . . . 6 (𝜑𝑋𝐸)
171, 2, 3, 4, 11, 12, 13, 14, 9, 15, 16lcfrlem4 41506 . . . . 5 (𝜑𝑋𝑉)
18 lcfrlem38.x . . . . 5 (𝜑𝑋0 )
19 eldifsn 4766 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2017, 18, 19sylanbrc 583 . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 lcfrlem38.ye . . . . . 6 (𝜑𝑌𝐸)
231, 2, 3, 4, 11, 12, 13, 14, 9, 15, 22lcfrlem4 41506 . . . . 5 (𝜑𝑌𝑉)
24 lcfrlem38.y . . . . 5 (𝜑𝑌0 )
25 eldifsn 4766 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌𝑉𝑌0 ))
2623, 24, 25sylanbrc 583 . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2726adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 }))
28 lcfrlem38.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2928adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 lcfrlem38.b . . 3 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
31 lcfrlem38.t . . 3 · = ( ·𝑠𝑈)
32 lcfrlem38.s . . 3 𝑆 = (Scalar‘𝑈)
33 eqid 2734 . . 3 (0g𝑆) = (0g𝑆)
34 lcfrlem38.r . . 3 𝑅 = (Base‘𝑆)
35 lcfrlem38.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
36 lcfrlem38.i . . . 4 (𝜑𝐼𝐵)
3736adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐼𝐵)
38 simpr 484 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → ((𝐽𝑌)‘𝐼) = (0g𝑆))
39 lcfrlem38.n . . . 4 (𝜑𝐼0 )
4039adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐼0 )
4115, 13eleqtrdi 2843 . . . 4 (𝜑𝐺 ∈ (LSubSp‘𝐷))
4241adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐺 ∈ (LSubSp‘𝐷))
43 lcfrlem38.gs . . . . 5 (𝜑𝐺𝐶)
44 lcfrlem38.c . . . . 5 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
4543, 44sseqtrdi 4004 . . . 4 (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
4645adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
4716adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑋𝐸)
4822adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑌𝐸)
491, 2, 3, 4, 5, 6, 7, 8, 10, 21, 27, 29, 30, 31, 32, 33, 34, 35, 37, 11, 12, 38, 40, 42, 46, 14, 47, 48lcfrlem27 41530 . 2 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝑋 + 𝑌) ∈ 𝐸)
509adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5120adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 }))
5226adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 }))
5328adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
5436adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐼𝐵)
55 simpr 484 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → ((𝐽𝑌)‘𝐼) ≠ (0g𝑆))
56 eqid 2734 . . 3 (invr𝑆) = (invr𝑆)
57 eqid 2734 . . 3 (-g𝐷) = (-g𝐷)
58 eqid 2734 . . 3 ((𝐽𝑋)(-g𝐷)((((invr𝑆)‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) = ((𝐽𝑋)(-g𝐷)((((invr𝑆)‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
5941adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐺 ∈ (LSubSp‘𝐷))
6045adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
6116adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑋𝐸)
6222adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑌𝐸)
631, 2, 3, 4, 5, 6, 7, 8, 50, 51, 52, 53, 30, 31, 32, 33, 34, 35, 54, 11, 12, 55, 56, 57, 58, 59, 60, 14, 61, 62lcfrlem37 41540 . 2 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝑋 + 𝑌) ∈ 𝐸)
6449, 63pm2.61dane 3018 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  cdif 3928  cin 3930  wss 3931  {csn 4606  {cpr 4608   ciun 4971  cmpt 5205  cfv 6541  crio 7369  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  .rcmulr 17274  Scalarcsca 17276   ·𝑠 cvsca 17277  0gc0g 17455  -gcsg 18922  invrcinvr 20355  LSubSpclss 20897  LSpanclspn 20937  LSAtomsclsa 38934  LFnlclfn 39017  LKerclk 39045  LDualcld 39083  HLchlt 39310  LHypclh 39945  DVecHcdvh 41039  ocHcoch 41308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-riotaBAD 38913
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-undef 8280  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-0g 17457  df-mre 17600  df-mrc 17601  df-acs 17603  df-proset 18310  df-poset 18329  df-plt 18344  df-lub 18360  df-glb 18361  df-join 18362  df-meet 18363  df-p0 18439  df-p1 18440  df-lat 18446  df-clat 18513  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-cntz 19304  df-oppg 19333  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-nzr 20481  df-rlreg 20662  df-domn 20663  df-drng 20699  df-lmod 20828  df-lss 20898  df-lsp 20938  df-lvec 21070  df-lsatoms 38936  df-lshyp 38937  df-lcv 38979  df-lfl 39018  df-lkr 39046  df-ldual 39084  df-oposet 39136  df-ol 39138  df-oml 39139  df-covers 39226  df-ats 39227  df-atl 39258  df-cvlat 39282  df-hlat 39311  df-llines 39459  df-lplanes 39460  df-lvols 39461  df-lines 39462  df-psubsp 39464  df-pmap 39465  df-padd 39757  df-lhyp 39949  df-laut 39950  df-ldil 40065  df-ltrn 40066  df-trl 40120  df-tgrp 40704  df-tendo 40716  df-edring 40718  df-dveca 40964  df-disoa 40990  df-dvech 41040  df-dib 41100  df-dic 41134  df-dih 41190  df-doch 41309  df-djh 41356
This theorem is referenced by:  lcfrlem39  41542
  Copyright terms: Public domain W3C validator