| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem38 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41574. Combine lcfrlem27 41558 and lcfrlem37 41568. (Contributed by NM, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem38.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfrlem38.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfrlem38.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfrlem38.p | ⊢ + = (+g‘𝑈) |
| lcfrlem38.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfrlem38.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcfrlem38.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem38.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
| lcfrlem38.c | ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lcfrlem38.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
| lcfrlem38.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfrlem38.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
| lcfrlem38.gs | ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
| lcfrlem38.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| lcfrlem38.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
| lcfrlem38.z | ⊢ 0 = (0g‘𝑈) |
| lcfrlem38.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| lcfrlem38.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| lcfrlem38.sp | ⊢ 𝑁 = (LSpan‘𝑈) |
| lcfrlem38.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| lcfrlem38.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
| lcfrlem38.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| lcfrlem38.n | ⊢ (𝜑 → 𝐼 ≠ 0 ) |
| lcfrlem38.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfrlem38.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| lcfrlem38.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcfrlem38.r | ⊢ 𝑅 = (Base‘𝑆) |
| lcfrlem38.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
| Ref | Expression |
|---|---|
| lcfrlem38 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem38.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lcfrlem38.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 3 | lcfrlem38.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | lcfrlem38.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | lcfrlem38.p | . . 3 ⊢ + = (+g‘𝑈) | |
| 6 | lcfrlem38.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 7 | lcfrlem38.sp | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 8 | eqid 2730 | . . 3 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
| 9 | lcfrlem38.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 11 | lcfrlem38.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
| 12 | lcfrlem38.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
| 13 | lcfrlem38.q | . . . . . 6 ⊢ 𝑄 = (LSubSp‘𝐷) | |
| 14 | lcfrlem38.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
| 15 | lcfrlem38.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
| 16 | lcfrlem38.xe | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 17 | 1, 2, 3, 4, 11, 12, 13, 14, 9, 15, 16 | lcfrlem4 41534 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 18 | lcfrlem38.x | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
| 19 | eldifsn 4752 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
| 20 | 17, 18, 19 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 22 | lcfrlem38.ye | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
| 23 | 1, 2, 3, 4, 11, 12, 13, 14, 9, 15, 22 | lcfrlem4 41534 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 24 | lcfrlem38.y | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
| 25 | eldifsn 4752 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) | |
| 26 | 23, 24, 25 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 28 | lcfrlem38.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 30 | lcfrlem38.b | . . 3 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
| 31 | lcfrlem38.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 32 | lcfrlem38.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 33 | eqid 2730 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 34 | lcfrlem38.r | . . 3 ⊢ 𝑅 = (Base‘𝑆) | |
| 35 | lcfrlem38.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
| 36 | lcfrlem38.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐼 ∈ 𝐵) |
| 38 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) | |
| 39 | lcfrlem38.n | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 0 ) | |
| 40 | 39 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐼 ≠ 0 ) |
| 41 | 15, 13 | eleqtrdi 2839 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐺 ∈ (LSubSp‘𝐷)) |
| 43 | lcfrlem38.gs | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) | |
| 44 | lcfrlem38.c | . . . . 5 ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 45 | 43, 44 | sseqtrdi 3989 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 46 | 45 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 47 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑋 ∈ 𝐸) |
| 48 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑌 ∈ 𝐸) |
| 49 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 21, 27, 29, 30, 31, 32, 33, 34, 35, 37, 11, 12, 38, 40, 42, 46, 14, 47, 48 | lcfrlem27 41558 | . 2 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝑋 + 𝑌) ∈ 𝐸) |
| 50 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 51 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 52 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 53 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 54 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐼 ∈ 𝐵) |
| 55 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) | |
| 56 | eqid 2730 | . . 3 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
| 57 | eqid 2730 | . . 3 ⊢ (-g‘𝐷) = (-g‘𝐷) | |
| 58 | eqid 2730 | . . 3 ⊢ ((𝐽‘𝑋)(-g‘𝐷)((((invr‘𝑆)‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) = ((𝐽‘𝑋)(-g‘𝐷)((((invr‘𝑆)‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
| 59 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐺 ∈ (LSubSp‘𝐷)) |
| 60 | 45 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 61 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑋 ∈ 𝐸) |
| 62 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑌 ∈ 𝐸) |
| 63 | 1, 2, 3, 4, 5, 6, 7, 8, 50, 51, 52, 53, 30, 31, 32, 33, 34, 35, 54, 11, 12, 55, 56, 57, 58, 59, 60, 14, 61, 62 | lcfrlem37 41568 | . 2 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝑋 + 𝑌) ∈ 𝐸) |
| 64 | 49, 63 | pm2.61dane 3013 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 ∖ cdif 3913 ∩ cin 3915 ⊆ wss 3916 {csn 4591 {cpr 4593 ∪ ciun 4957 ↦ cmpt 5190 ‘cfv 6513 ℩crio 7345 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 .rcmulr 17227 Scalarcsca 17229 ·𝑠 cvsca 17230 0gc0g 17408 -gcsg 18873 invrcinvr 20302 LSubSpclss 20843 LSpanclspn 20883 LSAtomsclsa 38962 LFnlclfn 39045 LKerclk 39073 LDualcld 39111 HLchlt 39338 LHypclh 39973 DVecHcdvh 41067 ocHcoch 41336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-riotaBAD 38941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-0g 17410 df-mre 17553 df-mrc 17554 df-acs 17556 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cntz 19255 df-oppg 19284 df-lsm 19572 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-nzr 20428 df-rlreg 20609 df-domn 20610 df-drng 20646 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lvec 21016 df-lsatoms 38964 df-lshyp 38965 df-lcv 39007 df-lfl 39046 df-lkr 39074 df-ldual 39112 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-llines 39487 df-lplanes 39488 df-lvols 39489 df-lines 39490 df-psubsp 39492 df-pmap 39493 df-padd 39785 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 df-tgrp 40732 df-tendo 40744 df-edring 40746 df-dveca 40992 df-disoa 41018 df-dvech 41068 df-dib 41128 df-dic 41162 df-dih 41218 df-doch 41337 df-djh 41384 |
| This theorem is referenced by: lcfrlem39 41570 |
| Copyright terms: Public domain | W3C validator |