Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem38 Structured version   Visualization version   GIF version

Theorem lcfrlem38 38718
Description: Lemma for lcfr 38723. Combine lcfrlem27 38707 and lcfrlem37 38717. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
lcfrlem38.z 0 = (0g𝑈)
lcfrlem38.x (𝜑𝑋0 )
lcfrlem38.y (𝜑𝑌0 )
lcfrlem38.sp 𝑁 = (LSpan‘𝑈)
lcfrlem38.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem38.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem38.i (𝜑𝐼𝐵)
lcfrlem38.n (𝜑𝐼0 )
lcfrlem38.v 𝑉 = (Base‘𝑈)
lcfrlem38.t · = ( ·𝑠𝑈)
lcfrlem38.s 𝑆 = (Scalar‘𝑈)
lcfrlem38.r 𝑅 = (Base‘𝑆)
lcfrlem38.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
Assertion
Ref Expression
lcfrlem38 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝑔,𝑘,𝐷   𝑔,𝐺,𝑘   𝑔,𝐼,𝑘   𝑓,𝑔,𝑘,𝐽   𝑓,𝐿,𝑔,𝑘   𝑣,𝑓,𝑤,𝑥, ,𝑔,𝑘   + ,𝑓,𝑔,𝑘,𝑣,𝑤,𝑥   𝑅,𝑓,𝑘,𝑣,𝑥   𝑆,𝑔,𝑘   · ,𝑓,𝑘,𝑣,𝑤,𝑥   𝑈,𝑓,𝑔,𝑘,𝑣,𝑤,𝑥   𝑓,𝑉,𝑔,𝑣,𝑥   𝑓,𝑋,𝑔,𝑘,𝑣,𝑤,𝑥   𝑓,𝑌,𝑔,𝑘,𝑣,𝑤,𝑥   0 ,𝑓,𝑔,𝑘,𝑥   𝜑,𝑔,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐵(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓)   · (𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑓)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣)   𝑁(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣)

Proof of Theorem lcfrlem38
StepHypRef Expression
1 lcfrlem38.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfrlem38.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem38.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem38.v . . 3 𝑉 = (Base‘𝑈)
5 lcfrlem38.p . . 3 + = (+g𝑈)
6 lcfrlem38.z . . 3 0 = (0g𝑈)
7 lcfrlem38.sp . . 3 𝑁 = (LSpan‘𝑈)
8 eqid 2823 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
9 lcfrlem38.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
109adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 lcfrlem38.l . . . . . 6 𝐿 = (LKer‘𝑈)
12 lcfrlem38.d . . . . . 6 𝐷 = (LDual‘𝑈)
13 lcfrlem38.q . . . . . 6 𝑄 = (LSubSp‘𝐷)
14 lcfrlem38.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
15 lcfrlem38.g . . . . . 6 (𝜑𝐺𝑄)
16 lcfrlem38.xe . . . . . 6 (𝜑𝑋𝐸)
171, 2, 3, 4, 11, 12, 13, 14, 9, 15, 16lcfrlem4 38683 . . . . 5 (𝜑𝑋𝑉)
18 lcfrlem38.x . . . . 5 (𝜑𝑋0 )
19 eldifsn 4721 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2017, 18, 19sylanbrc 585 . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 lcfrlem38.ye . . . . . 6 (𝜑𝑌𝐸)
231, 2, 3, 4, 11, 12, 13, 14, 9, 15, 22lcfrlem4 38683 . . . . 5 (𝜑𝑌𝑉)
24 lcfrlem38.y . . . . 5 (𝜑𝑌0 )
25 eldifsn 4721 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌𝑉𝑌0 ))
2623, 24, 25sylanbrc 585 . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2726adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 }))
28 lcfrlem38.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2928adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 lcfrlem38.b . . 3 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
31 lcfrlem38.t . . 3 · = ( ·𝑠𝑈)
32 lcfrlem38.s . . 3 𝑆 = (Scalar‘𝑈)
33 eqid 2823 . . 3 (0g𝑆) = (0g𝑆)
34 lcfrlem38.r . . 3 𝑅 = (Base‘𝑆)
35 lcfrlem38.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
36 lcfrlem38.i . . . 4 (𝜑𝐼𝐵)
3736adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐼𝐵)
38 simpr 487 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → ((𝐽𝑌)‘𝐼) = (0g𝑆))
39 lcfrlem38.n . . . 4 (𝜑𝐼0 )
4039adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐼0 )
4115, 13eleqtrdi 2925 . . . 4 (𝜑𝐺 ∈ (LSubSp‘𝐷))
4241adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐺 ∈ (LSubSp‘𝐷))
43 lcfrlem38.gs . . . . 5 (𝜑𝐺𝐶)
44 lcfrlem38.c . . . . 5 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
4543, 44sseqtrdi 4019 . . . 4 (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
4645adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
4716adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑋𝐸)
4822adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑌𝐸)
491, 2, 3, 4, 5, 6, 7, 8, 10, 21, 27, 29, 30, 31, 32, 33, 34, 35, 37, 11, 12, 38, 40, 42, 46, 14, 47, 48lcfrlem27 38707 . 2 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝑋 + 𝑌) ∈ 𝐸)
509adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5120adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 }))
5226adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 }))
5328adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
5436adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐼𝐵)
55 simpr 487 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → ((𝐽𝑌)‘𝐼) ≠ (0g𝑆))
56 eqid 2823 . . 3 (invr𝑆) = (invr𝑆)
57 eqid 2823 . . 3 (-g𝐷) = (-g𝐷)
58 eqid 2823 . . 3 ((𝐽𝑋)(-g𝐷)((((invr𝑆)‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) = ((𝐽𝑋)(-g𝐷)((((invr𝑆)‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
5941adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐺 ∈ (LSubSp‘𝐷))
6045adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
6116adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑋𝐸)
6222adantr 483 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑌𝐸)
631, 2, 3, 4, 5, 6, 7, 8, 50, 51, 52, 53, 30, 31, 32, 33, 34, 35, 54, 11, 12, 55, 56, 57, 58, 59, 60, 14, 61, 62lcfrlem37 38717 . 2 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝑋 + 𝑌) ∈ 𝐸)
6449, 63pm2.61dane 3106 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wrex 3141  {crab 3144  cdif 3935  cin 3937  wss 3938  {csn 4569  {cpr 4571   ciun 4921  cmpt 5148  cfv 6357  crio 7115  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  -gcsg 18107  invrcinvr 19423  LSubSpclss 19705  LSpanclspn 19745  LSAtomsclsa 36112  LFnlclfn 36195  LKerclk 36223  LDualcld 36261  HLchlt 36488  LHypclh 37122  DVecHcdvh 38216  ocHcoch 38485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-mre 16859  df-mrc 16860  df-acs 16862  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-oppg 18476  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36114  df-lshyp 36115  df-lcv 36157  df-lfl 36196  df-lkr 36224  df-ldual 36262  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tgrp 37881  df-tendo 37893  df-edring 37895  df-dveca 38141  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367  df-doch 38486  df-djh 38533
This theorem is referenced by:  lcfrlem39  38719
  Copyright terms: Public domain W3C validator