Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem38 Structured version   Visualization version   GIF version

Theorem lcfrlem38 41539
Description: Lemma for lcfr 41544. Combine lcfrlem27 41528 and lcfrlem37 41538. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
lcfrlem38.z 0 = (0g𝑈)
lcfrlem38.x (𝜑𝑋0 )
lcfrlem38.y (𝜑𝑌0 )
lcfrlem38.sp 𝑁 = (LSpan‘𝑈)
lcfrlem38.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem38.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem38.i (𝜑𝐼𝐵)
lcfrlem38.n (𝜑𝐼0 )
lcfrlem38.v 𝑉 = (Base‘𝑈)
lcfrlem38.t · = ( ·𝑠𝑈)
lcfrlem38.s 𝑆 = (Scalar‘𝑈)
lcfrlem38.r 𝑅 = (Base‘𝑆)
lcfrlem38.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
Assertion
Ref Expression
lcfrlem38 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝑔,𝑘,𝐷   𝑔,𝐺,𝑘   𝑔,𝐼,𝑘   𝑓,𝑔,𝑘,𝐽   𝑓,𝐿,𝑔,𝑘   𝑣,𝑓,𝑤,𝑥, ,𝑔,𝑘   + ,𝑓,𝑔,𝑘,𝑣,𝑤,𝑥   𝑅,𝑓,𝑘,𝑣,𝑥   𝑆,𝑔,𝑘   · ,𝑓,𝑘,𝑣,𝑤,𝑥   𝑈,𝑓,𝑔,𝑘,𝑣,𝑤,𝑥   𝑓,𝑉,𝑔,𝑣,𝑥   𝑓,𝑋,𝑔,𝑘,𝑣,𝑤,𝑥   𝑓,𝑌,𝑔,𝑘,𝑣,𝑤,𝑥   0 ,𝑓,𝑔,𝑘,𝑥   𝜑,𝑔,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐵(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓)   · (𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑓)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣)   𝑁(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣)

Proof of Theorem lcfrlem38
StepHypRef Expression
1 lcfrlem38.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfrlem38.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem38.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem38.v . . 3 𝑉 = (Base‘𝑈)
5 lcfrlem38.p . . 3 + = (+g𝑈)
6 lcfrlem38.z . . 3 0 = (0g𝑈)
7 lcfrlem38.sp . . 3 𝑁 = (LSpan‘𝑈)
8 eqid 2740 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
9 lcfrlem38.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
109adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 lcfrlem38.l . . . . . 6 𝐿 = (LKer‘𝑈)
12 lcfrlem38.d . . . . . 6 𝐷 = (LDual‘𝑈)
13 lcfrlem38.q . . . . . 6 𝑄 = (LSubSp‘𝐷)
14 lcfrlem38.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
15 lcfrlem38.g . . . . . 6 (𝜑𝐺𝑄)
16 lcfrlem38.xe . . . . . 6 (𝜑𝑋𝐸)
171, 2, 3, 4, 11, 12, 13, 14, 9, 15, 16lcfrlem4 41504 . . . . 5 (𝜑𝑋𝑉)
18 lcfrlem38.x . . . . 5 (𝜑𝑋0 )
19 eldifsn 4811 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2017, 18, 19sylanbrc 582 . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 lcfrlem38.ye . . . . . 6 (𝜑𝑌𝐸)
231, 2, 3, 4, 11, 12, 13, 14, 9, 15, 22lcfrlem4 41504 . . . . 5 (𝜑𝑌𝑉)
24 lcfrlem38.y . . . . 5 (𝜑𝑌0 )
25 eldifsn 4811 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌𝑉𝑌0 ))
2623, 24, 25sylanbrc 582 . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2726adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 }))
28 lcfrlem38.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2928adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 lcfrlem38.b . . 3 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
31 lcfrlem38.t . . 3 · = ( ·𝑠𝑈)
32 lcfrlem38.s . . 3 𝑆 = (Scalar‘𝑈)
33 eqid 2740 . . 3 (0g𝑆) = (0g𝑆)
34 lcfrlem38.r . . 3 𝑅 = (Base‘𝑆)
35 lcfrlem38.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
36 lcfrlem38.i . . . 4 (𝜑𝐼𝐵)
3736adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐼𝐵)
38 simpr 484 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → ((𝐽𝑌)‘𝐼) = (0g𝑆))
39 lcfrlem38.n . . . 4 (𝜑𝐼0 )
4039adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐼0 )
4115, 13eleqtrdi 2854 . . . 4 (𝜑𝐺 ∈ (LSubSp‘𝐷))
4241adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐺 ∈ (LSubSp‘𝐷))
43 lcfrlem38.gs . . . . 5 (𝜑𝐺𝐶)
44 lcfrlem38.c . . . . 5 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
4543, 44sseqtrdi 4059 . . . 4 (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
4645adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
4716adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑋𝐸)
4822adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑌𝐸)
491, 2, 3, 4, 5, 6, 7, 8, 10, 21, 27, 29, 30, 31, 32, 33, 34, 35, 37, 11, 12, 38, 40, 42, 46, 14, 47, 48lcfrlem27 41528 . 2 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝑋 + 𝑌) ∈ 𝐸)
509adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5120adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 }))
5226adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 }))
5328adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
5436adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐼𝐵)
55 simpr 484 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → ((𝐽𝑌)‘𝐼) ≠ (0g𝑆))
56 eqid 2740 . . 3 (invr𝑆) = (invr𝑆)
57 eqid 2740 . . 3 (-g𝐷) = (-g𝐷)
58 eqid 2740 . . 3 ((𝐽𝑋)(-g𝐷)((((invr𝑆)‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) = ((𝐽𝑋)(-g𝐷)((((invr𝑆)‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
5941adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐺 ∈ (LSubSp‘𝐷))
6045adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
6116adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑋𝐸)
6222adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑌𝐸)
631, 2, 3, 4, 5, 6, 7, 8, 50, 51, 52, 53, 30, 31, 32, 33, 34, 35, 54, 11, 12, 55, 56, 57, 58, 59, 60, 14, 61, 62lcfrlem37 41538 . 2 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝑋 + 𝑌) ∈ 𝐸)
6449, 63pm2.61dane 3035 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  cdif 3973  cin 3975  wss 3976  {csn 4648  {cpr 4650   ciun 5015  cmpt 5249  cfv 6575  crio 7405  (class class class)co 7450  Basecbs 17260  +gcplusg 17313  .rcmulr 17314  Scalarcsca 17316   ·𝑠 cvsca 17317  0gc0g 17501  -gcsg 18977  invrcinvr 20415  LSubSpclss 20954  LSpanclspn 20994  LSAtomsclsa 38932  LFnlclfn 39015  LKerclk 39043  LDualcld 39081  HLchlt 39308  LHypclh 39943  DVecHcdvh 41037  ocHcoch 41306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-riotaBAD 38911
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-of 7716  df-om 7906  df-1st 8032  df-2nd 8033  df-tpos 8269  df-undef 8316  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-map 8888  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-n0 12556  df-z 12642  df-uz 12906  df-fz 13570  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-sca 17329  df-vsca 17330  df-0g 17503  df-mre 17646  df-mrc 17647  df-acs 17649  df-proset 18367  df-poset 18385  df-plt 18402  df-lub 18418  df-glb 18419  df-join 18420  df-meet 18421  df-p0 18497  df-p1 18498  df-lat 18504  df-clat 18571  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-submnd 18821  df-grp 18978  df-minusg 18979  df-sbg 18980  df-subg 19165  df-cntz 19359  df-oppg 19388  df-lsm 19680  df-cmn 19826  df-abl 19827  df-mgp 20164  df-rng 20182  df-ur 20211  df-ring 20264  df-oppr 20362  df-dvdsr 20385  df-unit 20386  df-invr 20416  df-dvr 20429  df-nzr 20541  df-rlreg 20718  df-domn 20719  df-drng 20755  df-lmod 20884  df-lss 20955  df-lsp 20995  df-lvec 21127  df-lsatoms 38934  df-lshyp 38935  df-lcv 38977  df-lfl 39016  df-lkr 39044  df-ldual 39082  df-oposet 39134  df-ol 39136  df-oml 39137  df-covers 39224  df-ats 39225  df-atl 39256  df-cvlat 39280  df-hlat 39309  df-llines 39457  df-lplanes 39458  df-lvols 39459  df-lines 39460  df-psubsp 39462  df-pmap 39463  df-padd 39755  df-lhyp 39947  df-laut 39948  df-ldil 40063  df-ltrn 40064  df-trl 40118  df-tgrp 40702  df-tendo 40714  df-edring 40716  df-dveca 40962  df-disoa 40988  df-dvech 41038  df-dib 41098  df-dic 41132  df-dih 41188  df-doch 41307  df-djh 41354
This theorem is referenced by:  lcfrlem39  41540
  Copyright terms: Public domain W3C validator