Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem38 Structured version   Visualization version   GIF version

Theorem lcfrlem38 41569
Description: Lemma for lcfr 41574. Combine lcfrlem27 41558 and lcfrlem37 41568. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
lcfrlem38.z 0 = (0g𝑈)
lcfrlem38.x (𝜑𝑋0 )
lcfrlem38.y (𝜑𝑌0 )
lcfrlem38.sp 𝑁 = (LSpan‘𝑈)
lcfrlem38.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem38.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem38.i (𝜑𝐼𝐵)
lcfrlem38.n (𝜑𝐼0 )
lcfrlem38.v 𝑉 = (Base‘𝑈)
lcfrlem38.t · = ( ·𝑠𝑈)
lcfrlem38.s 𝑆 = (Scalar‘𝑈)
lcfrlem38.r 𝑅 = (Base‘𝑆)
lcfrlem38.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
Assertion
Ref Expression
lcfrlem38 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝑔,𝑘,𝐷   𝑔,𝐺,𝑘   𝑔,𝐼,𝑘   𝑓,𝑔,𝑘,𝐽   𝑓,𝐿,𝑔,𝑘   𝑣,𝑓,𝑤,𝑥, ,𝑔,𝑘   + ,𝑓,𝑔,𝑘,𝑣,𝑤,𝑥   𝑅,𝑓,𝑘,𝑣,𝑥   𝑆,𝑔,𝑘   · ,𝑓,𝑘,𝑣,𝑤,𝑥   𝑈,𝑓,𝑔,𝑘,𝑣,𝑤,𝑥   𝑓,𝑉,𝑔,𝑣,𝑥   𝑓,𝑋,𝑔,𝑘,𝑣,𝑤,𝑥   𝑓,𝑌,𝑔,𝑘,𝑣,𝑤,𝑥   0 ,𝑓,𝑔,𝑘,𝑥   𝜑,𝑔,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐵(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓)   · (𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑓)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣)   𝑁(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣)

Proof of Theorem lcfrlem38
StepHypRef Expression
1 lcfrlem38.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfrlem38.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem38.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem38.v . . 3 𝑉 = (Base‘𝑈)
5 lcfrlem38.p . . 3 + = (+g𝑈)
6 lcfrlem38.z . . 3 0 = (0g𝑈)
7 lcfrlem38.sp . . 3 𝑁 = (LSpan‘𝑈)
8 eqid 2730 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
9 lcfrlem38.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
109adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 lcfrlem38.l . . . . . 6 𝐿 = (LKer‘𝑈)
12 lcfrlem38.d . . . . . 6 𝐷 = (LDual‘𝑈)
13 lcfrlem38.q . . . . . 6 𝑄 = (LSubSp‘𝐷)
14 lcfrlem38.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
15 lcfrlem38.g . . . . . 6 (𝜑𝐺𝑄)
16 lcfrlem38.xe . . . . . 6 (𝜑𝑋𝐸)
171, 2, 3, 4, 11, 12, 13, 14, 9, 15, 16lcfrlem4 41534 . . . . 5 (𝜑𝑋𝑉)
18 lcfrlem38.x . . . . 5 (𝜑𝑋0 )
19 eldifsn 4752 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2017, 18, 19sylanbrc 583 . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 lcfrlem38.ye . . . . . 6 (𝜑𝑌𝐸)
231, 2, 3, 4, 11, 12, 13, 14, 9, 15, 22lcfrlem4 41534 . . . . 5 (𝜑𝑌𝑉)
24 lcfrlem38.y . . . . 5 (𝜑𝑌0 )
25 eldifsn 4752 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌𝑉𝑌0 ))
2623, 24, 25sylanbrc 583 . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2726adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 }))
28 lcfrlem38.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2928adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 lcfrlem38.b . . 3 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
31 lcfrlem38.t . . 3 · = ( ·𝑠𝑈)
32 lcfrlem38.s . . 3 𝑆 = (Scalar‘𝑈)
33 eqid 2730 . . 3 (0g𝑆) = (0g𝑆)
34 lcfrlem38.r . . 3 𝑅 = (Base‘𝑆)
35 lcfrlem38.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
36 lcfrlem38.i . . . 4 (𝜑𝐼𝐵)
3736adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐼𝐵)
38 simpr 484 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → ((𝐽𝑌)‘𝐼) = (0g𝑆))
39 lcfrlem38.n . . . 4 (𝜑𝐼0 )
4039adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐼0 )
4115, 13eleqtrdi 2839 . . . 4 (𝜑𝐺 ∈ (LSubSp‘𝐷))
4241adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐺 ∈ (LSubSp‘𝐷))
43 lcfrlem38.gs . . . . 5 (𝜑𝐺𝐶)
44 lcfrlem38.c . . . . 5 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
4543, 44sseqtrdi 3989 . . . 4 (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
4645adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
4716adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑋𝐸)
4822adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → 𝑌𝐸)
491, 2, 3, 4, 5, 6, 7, 8, 10, 21, 27, 29, 30, 31, 32, 33, 34, 35, 37, 11, 12, 38, 40, 42, 46, 14, 47, 48lcfrlem27 41558 . 2 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) = (0g𝑆)) → (𝑋 + 𝑌) ∈ 𝐸)
509adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5120adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 }))
5226adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 }))
5328adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
5436adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐼𝐵)
55 simpr 484 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → ((𝐽𝑌)‘𝐼) ≠ (0g𝑆))
56 eqid 2730 . . 3 (invr𝑆) = (invr𝑆)
57 eqid 2730 . . 3 (-g𝐷) = (-g𝐷)
58 eqid 2730 . . 3 ((𝐽𝑋)(-g𝐷)((((invr𝑆)‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) = ((𝐽𝑋)(-g𝐷)((((invr𝑆)‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
5941adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐺 ∈ (LSubSp‘𝐷))
6045adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
6116adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑋𝐸)
6222adantr 480 . . 3 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → 𝑌𝐸)
631, 2, 3, 4, 5, 6, 7, 8, 50, 51, 52, 53, 30, 31, 32, 33, 34, 35, 54, 11, 12, 55, 56, 57, 58, 59, 60, 14, 61, 62lcfrlem37 41568 . 2 ((𝜑 ∧ ((𝐽𝑌)‘𝐼) ≠ (0g𝑆)) → (𝑋 + 𝑌) ∈ 𝐸)
6449, 63pm2.61dane 3013 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  cdif 3913  cin 3915  wss 3916  {csn 4591  {cpr 4593   ciun 4957  cmpt 5190  cfv 6513  crio 7345  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  .rcmulr 17227  Scalarcsca 17229   ·𝑠 cvsca 17230  0gc0g 17408  -gcsg 18873  invrcinvr 20302  LSubSpclss 20843  LSpanclspn 20883  LSAtomsclsa 38962  LFnlclfn 39045  LKerclk 39073  LDualcld 39111  HLchlt 39338  LHypclh 39973  DVecHcdvh 41067  ocHcoch 41336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-riotaBAD 38941
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-undef 8254  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17410  df-mre 17553  df-mrc 17554  df-acs 17556  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cntz 19255  df-oppg 19284  df-lsm 19572  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-nzr 20428  df-rlreg 20609  df-domn 20610  df-drng 20646  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lvec 21016  df-lsatoms 38964  df-lshyp 38965  df-lcv 39007  df-lfl 39046  df-lkr 39074  df-ldual 39112  df-oposet 39164  df-ol 39166  df-oml 39167  df-covers 39254  df-ats 39255  df-atl 39286  df-cvlat 39310  df-hlat 39339  df-llines 39487  df-lplanes 39488  df-lvols 39489  df-lines 39490  df-psubsp 39492  df-pmap 39493  df-padd 39785  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148  df-tgrp 40732  df-tendo 40744  df-edring 40746  df-dveca 40992  df-disoa 41018  df-dvech 41068  df-dib 41128  df-dic 41162  df-dih 41218  df-doch 41337  df-djh 41384
This theorem is referenced by:  lcfrlem39  41570
  Copyright terms: Public domain W3C validator