![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem38 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41544. Combine lcfrlem27 41528 and lcfrlem37 41538. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem38.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem38.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem38.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem38.p | ⊢ + = (+g‘𝑈) |
lcfrlem38.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfrlem38.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem38.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem38.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
lcfrlem38.c | ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcfrlem38.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem38.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem38.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
lcfrlem38.gs | ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
lcfrlem38.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem38.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
lcfrlem38.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem38.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
lcfrlem38.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
lcfrlem38.sp | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem38.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem38.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem38.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem38.n | ⊢ (𝜑 → 𝐼 ≠ 0 ) |
lcfrlem38.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem38.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem38.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem38.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem38.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
Ref | Expression |
---|---|
lcfrlem38 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem38.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem38.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcfrlem38.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcfrlem38.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfrlem38.p | . . 3 ⊢ + = (+g‘𝑈) | |
6 | lcfrlem38.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
7 | lcfrlem38.sp | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
8 | eqid 2740 | . . 3 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
9 | lcfrlem38.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | lcfrlem38.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
12 | lcfrlem38.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
13 | lcfrlem38.q | . . . . . 6 ⊢ 𝑄 = (LSubSp‘𝐷) | |
14 | lcfrlem38.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
15 | lcfrlem38.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
16 | lcfrlem38.xe | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
17 | 1, 2, 3, 4, 11, 12, 13, 14, 9, 15, 16 | lcfrlem4 41504 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
18 | lcfrlem38.x | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
19 | eldifsn 4811 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
20 | 17, 18, 19 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
22 | lcfrlem38.ye | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
23 | 1, 2, 3, 4, 11, 12, 13, 14, 9, 15, 22 | lcfrlem4 41504 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
24 | lcfrlem38.y | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
25 | eldifsn 4811 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) | |
26 | 23, 24, 25 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
28 | lcfrlem38.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
30 | lcfrlem38.b | . . 3 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
31 | lcfrlem38.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
32 | lcfrlem38.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
33 | eqid 2740 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
34 | lcfrlem38.r | . . 3 ⊢ 𝑅 = (Base‘𝑆) | |
35 | lcfrlem38.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
36 | lcfrlem38.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐼 ∈ 𝐵) |
38 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) | |
39 | lcfrlem38.n | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 0 ) | |
40 | 39 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐼 ≠ 0 ) |
41 | 15, 13 | eleqtrdi 2854 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) |
42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐺 ∈ (LSubSp‘𝐷)) |
43 | lcfrlem38.gs | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) | |
44 | lcfrlem38.c | . . . . 5 ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
45 | 43, 44 | sseqtrdi 4059 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
46 | 45 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
47 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑋 ∈ 𝐸) |
48 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑌 ∈ 𝐸) |
49 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 21, 27, 29, 30, 31, 32, 33, 34, 35, 37, 11, 12, 38, 40, 42, 46, 14, 47, 48 | lcfrlem27 41528 | . 2 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝑋 + 𝑌) ∈ 𝐸) |
50 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
51 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
52 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
53 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
54 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐼 ∈ 𝐵) |
55 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) | |
56 | eqid 2740 | . . 3 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
57 | eqid 2740 | . . 3 ⊢ (-g‘𝐷) = (-g‘𝐷) | |
58 | eqid 2740 | . . 3 ⊢ ((𝐽‘𝑋)(-g‘𝐷)((((invr‘𝑆)‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) = ((𝐽‘𝑋)(-g‘𝐷)((((invr‘𝑆)‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
59 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐺 ∈ (LSubSp‘𝐷)) |
60 | 45 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
61 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑋 ∈ 𝐸) |
62 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑌 ∈ 𝐸) |
63 | 1, 2, 3, 4, 5, 6, 7, 8, 50, 51, 52, 53, 30, 31, 32, 33, 34, 35, 54, 11, 12, 55, 56, 57, 58, 59, 60, 14, 61, 62 | lcfrlem37 41538 | . 2 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝑋 + 𝑌) ∈ 𝐸) |
64 | 49, 63 | pm2.61dane 3035 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 {csn 4648 {cpr 4650 ∪ ciun 5015 ↦ cmpt 5249 ‘cfv 6575 ℩crio 7405 (class class class)co 7450 Basecbs 17260 +gcplusg 17313 .rcmulr 17314 Scalarcsca 17316 ·𝑠 cvsca 17317 0gc0g 17501 -gcsg 18977 invrcinvr 20415 LSubSpclss 20954 LSpanclspn 20994 LSAtomsclsa 38932 LFnlclfn 39015 LKerclk 39043 LDualcld 39081 HLchlt 39308 LHypclh 39943 DVecHcdvh 41037 ocHcoch 41306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-riotaBAD 38911 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-om 7906 df-1st 8032 df-2nd 8033 df-tpos 8269 df-undef 8316 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-n0 12556 df-z 12642 df-uz 12906 df-fz 13570 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-sca 17329 df-vsca 17330 df-0g 17503 df-mre 17646 df-mrc 17647 df-acs 17649 df-proset 18367 df-poset 18385 df-plt 18402 df-lub 18418 df-glb 18419 df-join 18420 df-meet 18421 df-p0 18497 df-p1 18498 df-lat 18504 df-clat 18571 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-submnd 18821 df-grp 18978 df-minusg 18979 df-sbg 18980 df-subg 19165 df-cntz 19359 df-oppg 19388 df-lsm 19680 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-oppr 20362 df-dvdsr 20385 df-unit 20386 df-invr 20416 df-dvr 20429 df-nzr 20541 df-rlreg 20718 df-domn 20719 df-drng 20755 df-lmod 20884 df-lss 20955 df-lsp 20995 df-lvec 21127 df-lsatoms 38934 df-lshyp 38935 df-lcv 38977 df-lfl 39016 df-lkr 39044 df-ldual 39082 df-oposet 39134 df-ol 39136 df-oml 39137 df-covers 39224 df-ats 39225 df-atl 39256 df-cvlat 39280 df-hlat 39309 df-llines 39457 df-lplanes 39458 df-lvols 39459 df-lines 39460 df-psubsp 39462 df-pmap 39463 df-padd 39755 df-lhyp 39947 df-laut 39948 df-ldil 40063 df-ltrn 40064 df-trl 40118 df-tgrp 40702 df-tendo 40714 df-edring 40716 df-dveca 40962 df-disoa 40988 df-dvech 41038 df-dib 41098 df-dic 41132 df-dih 41188 df-doch 41307 df-djh 41354 |
This theorem is referenced by: lcfrlem39 41540 |
Copyright terms: Public domain | W3C validator |