| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem38 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41623. Combine lcfrlem27 41607 and lcfrlem37 41617. (Contributed by NM, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem38.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfrlem38.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfrlem38.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfrlem38.p | ⊢ + = (+g‘𝑈) |
| lcfrlem38.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfrlem38.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcfrlem38.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem38.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
| lcfrlem38.c | ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lcfrlem38.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
| lcfrlem38.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfrlem38.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
| lcfrlem38.gs | ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
| lcfrlem38.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| lcfrlem38.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
| lcfrlem38.z | ⊢ 0 = (0g‘𝑈) |
| lcfrlem38.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| lcfrlem38.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| lcfrlem38.sp | ⊢ 𝑁 = (LSpan‘𝑈) |
| lcfrlem38.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| lcfrlem38.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
| lcfrlem38.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| lcfrlem38.n | ⊢ (𝜑 → 𝐼 ≠ 0 ) |
| lcfrlem38.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfrlem38.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| lcfrlem38.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcfrlem38.r | ⊢ 𝑅 = (Base‘𝑆) |
| lcfrlem38.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
| Ref | Expression |
|---|---|
| lcfrlem38 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem38.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lcfrlem38.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 3 | lcfrlem38.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | lcfrlem38.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | lcfrlem38.p | . . 3 ⊢ + = (+g‘𝑈) | |
| 6 | lcfrlem38.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 7 | lcfrlem38.sp | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 8 | eqid 2731 | . . 3 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
| 9 | lcfrlem38.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 11 | lcfrlem38.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
| 12 | lcfrlem38.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
| 13 | lcfrlem38.q | . . . . . 6 ⊢ 𝑄 = (LSubSp‘𝐷) | |
| 14 | lcfrlem38.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
| 15 | lcfrlem38.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
| 16 | lcfrlem38.xe | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 17 | 1, 2, 3, 4, 11, 12, 13, 14, 9, 15, 16 | lcfrlem4 41583 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 18 | lcfrlem38.x | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
| 19 | eldifsn 4738 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
| 20 | 17, 18, 19 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 22 | lcfrlem38.ye | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
| 23 | 1, 2, 3, 4, 11, 12, 13, 14, 9, 15, 22 | lcfrlem4 41583 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 24 | lcfrlem38.y | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
| 25 | eldifsn 4738 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) | |
| 26 | 23, 24, 25 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 28 | lcfrlem38.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 30 | lcfrlem38.b | . . 3 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
| 31 | lcfrlem38.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 32 | lcfrlem38.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 33 | eqid 2731 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 34 | lcfrlem38.r | . . 3 ⊢ 𝑅 = (Base‘𝑆) | |
| 35 | lcfrlem38.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
| 36 | lcfrlem38.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐼 ∈ 𝐵) |
| 38 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) | |
| 39 | lcfrlem38.n | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 0 ) | |
| 40 | 39 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐼 ≠ 0 ) |
| 41 | 15, 13 | eleqtrdi 2841 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐺 ∈ (LSubSp‘𝐷)) |
| 43 | lcfrlem38.gs | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) | |
| 44 | lcfrlem38.c | . . . . 5 ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 45 | 43, 44 | sseqtrdi 3975 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 46 | 45 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 47 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑋 ∈ 𝐸) |
| 48 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → 𝑌 ∈ 𝐸) |
| 49 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 21, 27, 29, 30, 31, 32, 33, 34, 35, 37, 11, 12, 38, 40, 42, 46, 14, 47, 48 | lcfrlem27 41607 | . 2 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) = (0g‘𝑆)) → (𝑋 + 𝑌) ∈ 𝐸) |
| 50 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 51 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 52 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 53 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 54 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐼 ∈ 𝐵) |
| 55 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) | |
| 56 | eqid 2731 | . . 3 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
| 57 | eqid 2731 | . . 3 ⊢ (-g‘𝐷) = (-g‘𝐷) | |
| 58 | eqid 2731 | . . 3 ⊢ ((𝐽‘𝑋)(-g‘𝐷)((((invr‘𝑆)‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) = ((𝐽‘𝑋)(-g‘𝐷)((((invr‘𝑆)‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
| 59 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐺 ∈ (LSubSp‘𝐷)) |
| 60 | 45 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 61 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑋 ∈ 𝐸) |
| 62 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → 𝑌 ∈ 𝐸) |
| 63 | 1, 2, 3, 4, 5, 6, 7, 8, 50, 51, 52, 53, 30, 31, 32, 33, 34, 35, 54, 11, 12, 55, 56, 57, 58, 59, 60, 14, 61, 62 | lcfrlem37 41617 | . 2 ⊢ ((𝜑 ∧ ((𝐽‘𝑌)‘𝐼) ≠ (0g‘𝑆)) → (𝑋 + 𝑌) ∈ 𝐸) |
| 64 | 49, 63 | pm2.61dane 3015 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 ∖ cdif 3899 ∩ cin 3901 ⊆ wss 3902 {csn 4576 {cpr 4578 ∪ ciun 4941 ↦ cmpt 5172 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 Scalarcsca 17161 ·𝑠 cvsca 17162 0gc0g 17340 -gcsg 18845 invrcinvr 20303 LSubSpclss 20862 LSpanclspn 20902 LSAtomsclsa 39012 LFnlclfn 39095 LKerclk 39123 LDualcld 39161 HLchlt 39388 LHypclh 40022 DVecHcdvh 41116 ocHcoch 41385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-riotaBAD 38991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-0g 17342 df-mre 17485 df-mrc 17486 df-acs 17488 df-proset 18197 df-poset 18216 df-plt 18231 df-lub 18247 df-glb 18248 df-join 18249 df-meet 18250 df-p0 18326 df-p1 18327 df-lat 18335 df-clat 18402 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cntz 19227 df-oppg 19256 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-nzr 20426 df-rlreg 20607 df-domn 20608 df-drng 20644 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lvec 21035 df-lsatoms 39014 df-lshyp 39015 df-lcv 39057 df-lfl 39096 df-lkr 39124 df-ldual 39162 df-oposet 39214 df-ol 39216 df-oml 39217 df-covers 39304 df-ats 39305 df-atl 39336 df-cvlat 39360 df-hlat 39389 df-llines 39536 df-lplanes 39537 df-lvols 39538 df-lines 39539 df-psubsp 39541 df-pmap 39542 df-padd 39834 df-lhyp 40026 df-laut 40027 df-ldil 40142 df-ltrn 40143 df-trl 40197 df-tgrp 40781 df-tendo 40793 df-edring 40795 df-dveca 41041 df-disoa 41067 df-dvech 41117 df-dib 41177 df-dic 41211 df-dih 41267 df-doch 41386 df-djh 41433 |
| This theorem is referenced by: lcfrlem39 41619 |
| Copyright terms: Public domain | W3C validator |