Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem37 Structured version   Visualization version   GIF version

Theorem lcfrlem37 39593
Description: Lemma for lcfr 39599. (Contributed by NM, 8-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
lcfrlem37.g (𝜑𝐺 ∈ (LSubSp‘𝐷))
lcfrlem37.gs (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
lcfrlem37.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem37.xe (𝜑𝑋𝐸)
lcfrlem37.ye (𝜑𝑌𝐸)
Assertion
Ref Expression
lcfrlem37 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0   𝑓,𝐽   𝑓,𝐿   ,𝑓   + ,𝑓   𝑅,𝑓   · ,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑋   𝑓,𝑌,𝑘,𝑣,𝑤,𝑥,𝑔   𝐶,𝑔,𝑘   𝐷,𝑔,𝑘   𝑔,𝐺,𝑘   𝑔,𝐼,𝑘   𝑓,𝑔,𝐽,𝑘   𝑔,𝐿,𝑘   ,𝑔   + ,𝑔   𝑄,𝑔,𝑘   𝑈,𝑘   𝑔,𝑉   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔,𝑘   𝑣,𝑔,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐴(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓)   𝐷(𝑥,𝑤,𝑣,𝑓)   𝑄(𝑥,𝑤,𝑣,𝑓)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑔)   · (𝑔)   𝑈(𝑥,𝑤,𝑣,𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑓)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣)   (𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣,𝑓,𝑔,𝑘)

Proof of Theorem lcfrlem37
StepHypRef Expression
1 lcfrlem30.c . . . . 5 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
2 lcfrlem25.d . . . . . 6 𝐷 = (LDual‘𝑈)
3 lcfrlem30.m . . . . . 6 = (-g𝐷)
4 eqid 2738 . . . . . 6 (LSubSp‘𝐷) = (LSubSp‘𝐷)
5 lcfrlem17.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 lcfrlem17.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 lcfrlem17.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
85, 6, 7dvhlmod 39124 . . . . . 6 (𝜑𝑈 ∈ LMod)
9 lcfrlem37.g . . . . . 6 (𝜑𝐺 ∈ (LSubSp‘𝐷))
10 lcfrlem17.o . . . . . . 7 = ((ocH‘𝐾)‘𝑊)
11 lcfrlem17.v . . . . . . 7 𝑉 = (Base‘𝑈)
12 lcfrlem17.p . . . . . . 7 + = (+g𝑈)
13 lcfrlem24.t . . . . . . 7 · = ( ·𝑠𝑈)
14 lcfrlem24.s . . . . . . 7 𝑆 = (Scalar‘𝑈)
15 lcfrlem24.r . . . . . . 7 𝑅 = (Base‘𝑆)
16 lcfrlem17.z . . . . . . 7 0 = (0g𝑈)
17 eqid 2738 . . . . . . 7 (LFnl‘𝑈) = (LFnl‘𝑈)
18 lcfrlem24.l . . . . . . 7 𝐿 = (LKer‘𝑈)
19 eqid 2738 . . . . . . 7 (0g𝐷) = (0g𝐷)
20 eqid 2738 . . . . . . 7 {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
21 lcfrlem24.j . . . . . . 7 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 lcfrlem37.gs . . . . . . 7 (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
23 lcfrlem37.e . . . . . . 7 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
24 lcfrlem37.xe . . . . . . . 8 (𝜑𝑋𝐸)
25 lcfrlem17.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
26 eldifsni 4723 . . . . . . . . 9 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
2725, 26syl 17 . . . . . . . 8 (𝜑𝑋0 )
28 eldifsn 4720 . . . . . . . 8 (𝑋 ∈ (𝐸 ∖ { 0 }) ↔ (𝑋𝐸𝑋0 ))
2924, 27, 28sylanbrc 583 . . . . . . 7 (𝜑𝑋 ∈ (𝐸 ∖ { 0 }))
305, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 29lcfrlem16 39572 . . . . . 6 (𝜑 → (𝐽𝑋) ∈ 𝐺)
31 eqid 2738 . . . . . . 7 ( ·𝑠𝐷) = ( ·𝑠𝐷)
32 lcfrlem17.n . . . . . . . 8 𝑁 = (LSpan‘𝑈)
33 lcfrlem17.a . . . . . . . 8 𝐴 = (LSAtoms‘𝑈)
34 lcfrlem17.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
35 lcfrlem17.ne . . . . . . . 8 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
36 lcfrlem22.b . . . . . . . 8 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
37 lcfrlem24.q . . . . . . . 8 𝑄 = (0g𝑆)
38 lcfrlem24.ib . . . . . . . 8 (𝜑𝐼𝐵)
39 lcfrlem28.jn . . . . . . . 8 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
40 lcfrlem29.i . . . . . . . 8 𝐹 = (invr𝑆)
415, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40lcfrlem29 39585 . . . . . . 7 (𝜑 → ((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼)) ∈ 𝑅)
42 lcfrlem37.ye . . . . . . . . 9 (𝜑𝑌𝐸)
43 eldifsni 4723 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
4434, 43syl 17 . . . . . . . . 9 (𝜑𝑌0 )
45 eldifsn 4720 . . . . . . . . 9 (𝑌 ∈ (𝐸 ∖ { 0 }) ↔ (𝑌𝐸𝑌0 ))
4642, 44, 45sylanbrc 583 . . . . . . . 8 (𝜑𝑌 ∈ (𝐸 ∖ { 0 }))
475, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 46lcfrlem16 39572 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ 𝐺)
4814, 15, 2, 31, 4, 8, 9, 41, 47ldualssvscl 37172 . . . . . 6 (𝜑 → (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)) ∈ 𝐺)
492, 3, 4, 8, 9, 30, 48ldualssvsubcl 37173 . . . . 5 (𝜑 → ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) ∈ 𝐺)
501, 49eqeltrid 2843 . . . 4 (𝜑𝐶𝐺)
515, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40, 3, 1lcfrlem36 39592 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
52 2fveq3 6779 . . . . . 6 (𝑔 = 𝐶 → ( ‘(𝐿𝑔)) = ( ‘(𝐿𝐶)))
5352eleq2d 2824 . . . . 5 (𝑔 = 𝐶 → ((𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)) ↔ (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶))))
5453rspcev 3561 . . . 4 ((𝐶𝐺 ∧ (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶))) → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5550, 51, 54syl2anc 584 . . 3 (𝜑 → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
56 eliun 4928 . . 3 ((𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5755, 56sylibr 233 . 2 (𝜑 → (𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)))
5857, 23eleqtrrdi 2850 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  cdif 3884  cin 3886  wss 3887  {csn 4561  {cpr 4563   ciun 4924  cmpt 5157  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  -gcsg 18579  invrcinvr 19913  LSubSpclss 20193  LSpanclspn 20233  LSAtomsclsa 36988  LFnlclfn 37071  LKerclk 37099  LDualcld 37137  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  ocHcoch 39361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-oppg 18950  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lshyp 36991  df-lcv 37033  df-lfl 37072  df-lkr 37100  df-ldual 37138  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409
This theorem is referenced by:  lcfrlem38  39594
  Copyright terms: Public domain W3C validator