Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem37 Structured version   Visualization version   GIF version

Theorem lcfrlem37 37733
 Description: Lemma for lcfr 37739. (Contributed by NM, 8-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
lcfrlem37.g (𝜑𝐺 ∈ (LSubSp‘𝐷))
lcfrlem37.gs (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
lcfrlem37.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem37.xe (𝜑𝑋𝐸)
lcfrlem37.ye (𝜑𝑌𝐸)
Assertion
Ref Expression
lcfrlem37 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0   𝑓,𝐽   𝑓,𝐿   ,𝑓   + ,𝑓   𝑅,𝑓   · ,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑋   𝑓,𝑌,𝑘,𝑣,𝑤,𝑥,𝑔   𝐶,𝑔,𝑘   𝐷,𝑔,𝑘   𝑔,𝐺,𝑘   𝑔,𝐼,𝑘   𝑓,𝑔,𝐽,𝑘   𝑔,𝐿,𝑘   ,𝑔   + ,𝑔   𝑄,𝑔,𝑘   𝑈,𝑘   𝑔,𝑉   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔,𝑘   𝑣,𝑔,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐴(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓)   𝐷(𝑥,𝑤,𝑣,𝑓)   𝑄(𝑥,𝑤,𝑣,𝑓)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑔)   · (𝑔)   𝑈(𝑥,𝑤,𝑣,𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑓)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣)   (𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣,𝑓,𝑔,𝑘)

Proof of Theorem lcfrlem37
StepHypRef Expression
1 lcfrlem30.c . . . . 5 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
2 lcfrlem25.d . . . . . 6 𝐷 = (LDual‘𝑈)
3 lcfrlem30.m . . . . . 6 = (-g𝐷)
4 eqid 2778 . . . . . 6 (LSubSp‘𝐷) = (LSubSp‘𝐷)
5 lcfrlem17.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 lcfrlem17.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 lcfrlem17.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
85, 6, 7dvhlmod 37264 . . . . . 6 (𝜑𝑈 ∈ LMod)
9 lcfrlem37.g . . . . . 6 (𝜑𝐺 ∈ (LSubSp‘𝐷))
10 lcfrlem17.o . . . . . . 7 = ((ocH‘𝐾)‘𝑊)
11 lcfrlem17.v . . . . . . 7 𝑉 = (Base‘𝑈)
12 lcfrlem17.p . . . . . . 7 + = (+g𝑈)
13 lcfrlem24.t . . . . . . 7 · = ( ·𝑠𝑈)
14 lcfrlem24.s . . . . . . 7 𝑆 = (Scalar‘𝑈)
15 lcfrlem24.r . . . . . . 7 𝑅 = (Base‘𝑆)
16 lcfrlem17.z . . . . . . 7 0 = (0g𝑈)
17 eqid 2778 . . . . . . 7 (LFnl‘𝑈) = (LFnl‘𝑈)
18 lcfrlem24.l . . . . . . 7 𝐿 = (LKer‘𝑈)
19 eqid 2778 . . . . . . 7 (0g𝐷) = (0g𝐷)
20 eqid 2778 . . . . . . 7 {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
21 lcfrlem24.j . . . . . . 7 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 lcfrlem37.gs . . . . . . 7 (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
23 lcfrlem37.e . . . . . . 7 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
24 lcfrlem37.xe . . . . . . . 8 (𝜑𝑋𝐸)
25 lcfrlem17.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
26 eldifsni 4553 . . . . . . . . 9 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
2725, 26syl 17 . . . . . . . 8 (𝜑𝑋0 )
28 eldifsn 4550 . . . . . . . 8 (𝑋 ∈ (𝐸 ∖ { 0 }) ↔ (𝑋𝐸𝑋0 ))
2924, 27, 28sylanbrc 578 . . . . . . 7 (𝜑𝑋 ∈ (𝐸 ∖ { 0 }))
305, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 29lcfrlem16 37712 . . . . . 6 (𝜑 → (𝐽𝑋) ∈ 𝐺)
31 eqid 2778 . . . . . . 7 ( ·𝑠𝐷) = ( ·𝑠𝐷)
32 lcfrlem17.n . . . . . . . 8 𝑁 = (LSpan‘𝑈)
33 lcfrlem17.a . . . . . . . 8 𝐴 = (LSAtoms‘𝑈)
34 lcfrlem17.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
35 lcfrlem17.ne . . . . . . . 8 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
36 lcfrlem22.b . . . . . . . 8 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
37 lcfrlem24.q . . . . . . . 8 𝑄 = (0g𝑆)
38 lcfrlem24.ib . . . . . . . 8 (𝜑𝐼𝐵)
39 lcfrlem28.jn . . . . . . . 8 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
40 lcfrlem29.i . . . . . . . 8 𝐹 = (invr𝑆)
415, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40lcfrlem29 37725 . . . . . . 7 (𝜑 → ((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼)) ∈ 𝑅)
42 lcfrlem37.ye . . . . . . . . 9 (𝜑𝑌𝐸)
43 eldifsni 4553 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
4434, 43syl 17 . . . . . . . . 9 (𝜑𝑌0 )
45 eldifsn 4550 . . . . . . . . 9 (𝑌 ∈ (𝐸 ∖ { 0 }) ↔ (𝑌𝐸𝑌0 ))
4642, 44, 45sylanbrc 578 . . . . . . . 8 (𝜑𝑌 ∈ (𝐸 ∖ { 0 }))
475, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 46lcfrlem16 37712 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ 𝐺)
4814, 15, 2, 31, 4, 8, 9, 41, 47ldualssvscl 35312 . . . . . 6 (𝜑 → (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)) ∈ 𝐺)
492, 3, 4, 8, 9, 30, 48ldualssvsubcl 35313 . . . . 5 (𝜑 → ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) ∈ 𝐺)
501, 49syl5eqel 2863 . . . 4 (𝜑𝐶𝐺)
515, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40, 3, 1lcfrlem36 37732 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
52 2fveq3 6451 . . . . . 6 (𝑔 = 𝐶 → ( ‘(𝐿𝑔)) = ( ‘(𝐿𝐶)))
5352eleq2d 2845 . . . . 5 (𝑔 = 𝐶 → ((𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)) ↔ (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶))))
5453rspcev 3511 . . . 4 ((𝐶𝐺 ∧ (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶))) → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5550, 51, 54syl2anc 579 . . 3 (𝜑 → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
56 eliun 4757 . . 3 ((𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5755, 56sylibr 226 . 2 (𝜑 → (𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)))
5857, 23syl6eleqr 2870 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  ∃wrex 3091  {crab 3094   ∖ cdif 3789   ∩ cin 3791   ⊆ wss 3792  {csn 4398  {cpr 4400  ∪ ciun 4753   ↦ cmpt 4965  ‘cfv 6135  ℩crio 6882  (class class class)co 6922  Basecbs 16255  +gcplusg 16338  .rcmulr 16339  Scalarcsca 16341   ·𝑠 cvsca 16342  0gc0g 16486  -gcsg 17811  invrcinvr 19058  LSubSpclss 19324  LSpanclspn 19366  LSAtomsclsa 35128  LFnlclfn 35211  LKerclk 35239  LDualcld 35277  HLchlt 35504  LHypclh 36138  DVecHcdvh 37232  ocHcoch 37501 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-riotaBAD 35107 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-undef 7681  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-0g 16488  df-mre 16632  df-mrc 16633  df-acs 16635  df-proset 17314  df-poset 17332  df-plt 17344  df-lub 17360  df-glb 17361  df-join 17362  df-meet 17363  df-p0 17425  df-p1 17426  df-lat 17432  df-clat 17494  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-cntz 18133  df-oppg 18159  df-lsm 18435  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-drng 19141  df-lmod 19257  df-lss 19325  df-lsp 19367  df-lvec 19498  df-lsatoms 35130  df-lshyp 35131  df-lcv 35173  df-lfl 35212  df-lkr 35240  df-ldual 35278  df-oposet 35330  df-ol 35332  df-oml 35333  df-covers 35420  df-ats 35421  df-atl 35452  df-cvlat 35476  df-hlat 35505  df-llines 35652  df-lplanes 35653  df-lvols 35654  df-lines 35655  df-psubsp 35657  df-pmap 35658  df-padd 35950  df-lhyp 36142  df-laut 36143  df-ldil 36258  df-ltrn 36259  df-trl 36313  df-tgrp 36897  df-tendo 36909  df-edring 36911  df-dveca 37157  df-disoa 37183  df-dvech 37233  df-dib 37293  df-dic 37327  df-dih 37383  df-doch 37502  df-djh 37549 This theorem is referenced by:  lcfrlem38  37734
 Copyright terms: Public domain W3C validator