| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem37 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41550. (Contributed by NM, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfrlem17.p | ⊢ + = (+g‘𝑈) |
| lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
| lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
| lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
| lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
| lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
| lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
| lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
| lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
| lcfrlem30.m | ⊢ − = (-g‘𝐷) |
| lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
| lcfrlem37.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) |
| lcfrlem37.gs | ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| lcfrlem37.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
| lcfrlem37.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| lcfrlem37.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| lcfrlem37 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem30.c | . . . . 5 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
| 2 | lcfrlem25.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
| 3 | lcfrlem30.m | . . . . . 6 ⊢ − = (-g‘𝐷) | |
| 4 | eqid 2735 | . . . . . 6 ⊢ (LSubSp‘𝐷) = (LSubSp‘𝐷) | |
| 5 | lcfrlem17.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | lcfrlem17.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | lcfrlem17.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 8 | 5, 6, 7 | dvhlmod 41075 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 9 | lcfrlem37.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) | |
| 10 | lcfrlem17.o | . . . . . . 7 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 11 | lcfrlem17.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
| 12 | lcfrlem17.p | . . . . . . 7 ⊢ + = (+g‘𝑈) | |
| 13 | lcfrlem24.t | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 14 | lcfrlem24.s | . . . . . . 7 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 15 | lcfrlem24.r | . . . . . . 7 ⊢ 𝑅 = (Base‘𝑆) | |
| 16 | lcfrlem17.z | . . . . . . 7 ⊢ 0 = (0g‘𝑈) | |
| 17 | eqid 2735 | . . . . . . 7 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
| 18 | lcfrlem24.l | . . . . . . 7 ⊢ 𝐿 = (LKer‘𝑈) | |
| 19 | eqid 2735 | . . . . . . 7 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 20 | eqid 2735 | . . . . . . 7 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 21 | lcfrlem24.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
| 22 | lcfrlem37.gs | . . . . . . 7 ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) | |
| 23 | lcfrlem37.e | . . . . . . 7 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
| 24 | lcfrlem37.xe | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 25 | lcfrlem17.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 26 | eldifsni 4766 | . . . . . . . . 9 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
| 27 | 25, 26 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| 28 | eldifsn 4762 | . . . . . . . 8 ⊢ (𝑋 ∈ (𝐸 ∖ { 0 }) ↔ (𝑋 ∈ 𝐸 ∧ 𝑋 ≠ 0 )) | |
| 29 | 24, 27, 28 | sylanbrc 583 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝐸 ∖ { 0 })) |
| 30 | 5, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 29 | lcfrlem16 41523 | . . . . . 6 ⊢ (𝜑 → (𝐽‘𝑋) ∈ 𝐺) |
| 31 | eqid 2735 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
| 32 | lcfrlem17.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 33 | lcfrlem17.a | . . . . . . . 8 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 34 | lcfrlem17.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 35 | lcfrlem17.ne | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 36 | lcfrlem22.b | . . . . . . . 8 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
| 37 | lcfrlem24.q | . . . . . . . 8 ⊢ 𝑄 = (0g‘𝑆) | |
| 38 | lcfrlem24.ib | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 39 | lcfrlem28.jn | . . . . . . . 8 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
| 40 | lcfrlem29.i | . . . . . . . 8 ⊢ 𝐹 = (invr‘𝑆) | |
| 41 | 5, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40 | lcfrlem29 41536 | . . . . . . 7 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) ∈ 𝑅) |
| 42 | lcfrlem37.ye | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
| 43 | eldifsni 4766 | . . . . . . . . . 10 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
| 44 | 34, 43 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| 45 | eldifsn 4762 | . . . . . . . . 9 ⊢ (𝑌 ∈ (𝐸 ∖ { 0 }) ↔ (𝑌 ∈ 𝐸 ∧ 𝑌 ≠ 0 )) | |
| 46 | 42, 44, 45 | sylanbrc 583 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ (𝐸 ∖ { 0 })) |
| 47 | 5, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 46 | lcfrlem16 41523 | . . . . . . 7 ⊢ (𝜑 → (𝐽‘𝑌) ∈ 𝐺) |
| 48 | 14, 15, 2, 31, 4, 8, 9, 41, 47 | ldualssvscl 39122 | . . . . . 6 ⊢ (𝜑 → (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌)) ∈ 𝐺) |
| 49 | 2, 3, 4, 8, 9, 30, 48 | ldualssvsubcl 39123 | . . . . 5 ⊢ (𝜑 → ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ∈ 𝐺) |
| 50 | 1, 49 | eqeltrid 2838 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐺) |
| 51 | 5, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40, 3, 1 | lcfrlem36 41543 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) |
| 52 | 2fveq3 6880 | . . . . . 6 ⊢ (𝑔 = 𝐶 → ( ⊥ ‘(𝐿‘𝑔)) = ( ⊥ ‘(𝐿‘𝐶))) | |
| 53 | 52 | eleq2d 2820 | . . . . 5 ⊢ (𝑔 = 𝐶 → ((𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶)))) |
| 54 | 53 | rspcev 3601 | . . . 4 ⊢ ((𝐶 ∈ 𝐺 ∧ (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
| 55 | 50, 51, 54 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
| 56 | eliun 4971 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
| 57 | 55, 56 | sylibr 234 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
| 58 | 57, 23 | eleqtrrdi 2845 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 {csn 4601 {cpr 4603 ∪ ciun 4967 ↦ cmpt 5201 ‘cfv 6530 ℩crio 7359 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 .rcmulr 17270 Scalarcsca 17272 ·𝑠 cvsca 17273 0gc0g 17451 -gcsg 18916 invrcinvr 20345 LSubSpclss 20886 LSpanclspn 20926 LSAtomsclsa 38938 LFnlclfn 39021 LKerclk 39049 LDualcld 39087 HLchlt 39314 LHypclh 39949 DVecHcdvh 41043 ocHcoch 41312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-riotaBAD 38917 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-undef 8270 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-0g 17453 df-mre 17596 df-mrc 17597 df-acs 17599 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-p1 18434 df-lat 18440 df-clat 18507 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-cntz 19298 df-oppg 19327 df-lsm 19615 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-dvr 20359 df-nzr 20471 df-rlreg 20652 df-domn 20653 df-drng 20689 df-lmod 20817 df-lss 20887 df-lsp 20927 df-lvec 21059 df-lsatoms 38940 df-lshyp 38941 df-lcv 38983 df-lfl 39022 df-lkr 39050 df-ldual 39088 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-llines 39463 df-lplanes 39464 df-lvols 39465 df-lines 39466 df-psubsp 39468 df-pmap 39469 df-padd 39761 df-lhyp 39953 df-laut 39954 df-ldil 40069 df-ltrn 40070 df-trl 40124 df-tgrp 40708 df-tendo 40720 df-edring 40722 df-dveca 40968 df-disoa 40994 df-dvech 41044 df-dib 41104 df-dic 41138 df-dih 41194 df-doch 41313 df-djh 41360 |
| This theorem is referenced by: lcfrlem38 41545 |
| Copyright terms: Public domain | W3C validator |